K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2016

\(\frac{x-1}{99}-1+\frac{x-2}{49}-2+\frac{x-7}{31}-3+\frac{x-8}{23}-4=0\)

\(\frac{x-100}{99}+\frac{x-100}{49}+\frac{x-100}{31}+\frac{x-100}{23}=0\)

\(\left(x-100\right)\left(\frac{1}{99}+\frac{1}{49}+\frac{1}{31}+\frac{1}{23}\right)=0\)

x-100=0 ( vi 1/99+1/49+1/31+1/23 khác 0)

x=100

10 tháng 3 2017

<=> (x-1)/99-1 + (x-2)/49-2 + (x-7)/31-3 +(x-8)/23-4=0

<=> (x-100)/99 + (x-100)/49 + (x-100)/31 + (x-100)/23=0

<=> (x-100)(1/99 + 1/49 + 1/31 + 1/23)=0

<=> x-100=0(vì 1/99 + 1/49 + 1/31 +1/23)

<=> x=100

Vậy PT có TN S={100}

26 tháng 1 2018

c, Trừ hai vế cho 6 

Vế trái thì lấy từng số hạng trừ 1 là được

8 tháng 2 2018

thế tức là phải như nào hả bạn

22 tháng 2 2020

\(\frac{x-12}{21}+\frac{x-10}{23}=\frac{x-8}{25}+\frac{x-6}{27}\)

\(\Leftrightarrow\frac{x-12-21}{21}+\frac{x-10-23}{23}-\frac{x-8-25}{25}-\frac{x-6-27}{27}=0\)

\(\Leftrightarrow\frac{x-33}{21}+\frac{x-33}{23}-\frac{x-33}{25}-\frac{x-33}{27}=0\)

\(\Leftrightarrow\left(x-33\right)\left(\frac{1}{21}+\frac{1}{23}-\frac{1}{25}-\frac{1}{27}\right)=0\)

Vif \(\left(\frac{1}{21}+\frac{1}{23}-\frac{1}{25}-\frac{1}{27}\right)\ne0\)

\(\Rightarrow x-33=0\)

\(\Rightarrow x=33\)

22 tháng 2 2020

\(\frac{x-12}{21}+\frac{x-10}{23}=\frac{x-8}{25}+\frac{x-6}{27}\)

\(\Leftrightarrow\frac{x-12}{21}+1+\frac{x-10}{23}+1=\frac{x-8}{25}+1+\frac{x-6}{27}+1\)

\(\Leftrightarrow\frac{x-33}{21}+\frac{x-33}{23}=\frac{x-33}{25}+\frac{x-33}{27}\)

\(\Leftrightarrow\frac{x-33}{21}+\frac{x-33}{23}-\frac{x-33}{25}-\frac{x-33}{27}=0\)

\(\Leftrightarrow\left(x-33\right)\left(\frac{1}{21}+\frac{1}{23}-\frac{1}{25}-\frac{1}{27}\right)=0\)

Mà \(\frac{1}{21}+\frac{1}{23}-\frac{1}{25}-\frac{1}{27}\ne0\)

\(\Rightarrow x-33=0\)

\(\Leftrightarrow x=33\)

1 tháng 9 2020

a) 

\(=\frac{7\cdot7\cdot8\cdot8\cdot9\cdot9\cdot10\cdot10\cdot11\cdot11}{6\cdot8\cdot7\cdot9\cdot8\cdot10\cdot9\cdot11\cdot10\cdot12}\)    

\(=\frac{7\cdot11}{6\cdot12}\)     

\(=\frac{77}{72}\)

b) 

\(=1+\frac{1}{6}+1+\frac{1}{12}+1+\frac{1}{20}+1+\frac{1}{30}+1+\frac{1}{42}+1+\frac{1}{56}\)  

\(=6+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}\)  

\(=6+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{7}-\frac{1}{8}\)  

\(=6+\frac{1}{2}-\frac{1}{8}\)  

\(=6+\frac{3}{8}\)

\(=\frac{51}{8}\)

1 tháng 9 2020

Chia thành...a và b nhé.

Bg

a)Ta có: \(\frac{49}{48}.\frac{64}{63}.\frac{81}{80}.\frac{100}{99}.\frac{121}{120}\)

\(\frac{49.64.81.100.121}{48.63.80.99.120}\)

\(\frac{7.7.8.8.9.9.10.10.11.11}{6.8.7.9.8.10.9.11.10.12}\)

\(\frac{7.11}{6.12}\)    (chịt tiêu trên dưới)

\(\frac{77}{72}\)

b) Ta có: \(\frac{7}{6}+\frac{13}{12}+\frac{21}{20}+\frac{31}{30}+\frac{43}{42}+\frac{57}{56}\)

Có 6 số hạng  (đếm)

\(1+\frac{1}{6}+1+\frac{1}{12}+1+\frac{1}{20}+1+\frac{1}{30}+1+\frac{1}{42}+1+\frac{1}{56}\)

\(1+1+...+1+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}\)

\(1.6+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)

\(6+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)

\(6+\frac{1}{2}-\frac{1}{8}\)

\(\frac{13}{2}-\frac{1}{8}\)

\(\frac{51}{8}\)

Hơi dài....

27 tháng 2 2019

Bài 1 : Ta có:

\(\frac{7+\frac{7}{11}+\frac{7}{23}+\frac{7}{31}}{9+\frac{9}{11}+\frac{9}{23}+\frac{9}{31}}\)

\(\frac{7.\left(1+\frac{1}{11}+\frac{1}{23}+\frac{1}{31}\right)}{9.\left(1+\frac{1}{11}+\frac{1}{23}+\frac{1}{31}\right)}\)

\(\frac{7}{9}\)

Bài 2 :

 \(\frac{x}{2}+\frac{3x}{4}+\frac{5x}{6}=\frac{10}{24}\)

=> \(\frac{12x+18x+20x}{24}=\frac{10}{24}\)

=> 50x = 10

=> x = 10 : 50

=> x = 1/5

27 tháng 2 2019

Bài 3 : Để A nhận giá trị nguyên thì 3 \(⋮\)x + 3

                                         <=> x + 3 \(\in\)Ư(3) = {1; -1; 3; -3}

Lập bảng :

x + 3  1 -1 3 -3
  x  -2  -4 0 -6

Vậy 

8 tháng 2 2020

Câu 1 :

8 tháng 2 2020

a, Ta có : \(3\left(x-1\right)-2\left(x+3\right)=-15\)

=> \(3x-3-2x-6=-15\)

=> \(3x-3-2x-6+15=0\)

=> \(x=-6\)

Vậy phương trình có nghiệm là x = -6 .

b, Ta có : \(3\left(x-1\right)+2=3x-1\)

=> \(3x-3+2=3x-1\)

=> \(3x-3+2-3x+1=0\)

=> \(0=0\)

Vậy phương trình có vô số nghiệm .

c, Ta có : \(7\left(2-5x\right)-5=4\left(4-6x\right)\)

=> \(14-35x-5=16-24x\)

=> \(14-35x-5-16+24x=0\)

=> \(-35x+24x=7\)

=> \(x=\frac{-7}{11}\)

Vậy phương trình có nghiệm là \(x=\frac{-7}{11}\) .

Bài 2 :

a, Ta có : \(\frac{x}{30}+\frac{5x-1}{10}=\frac{x-8}{15}-\frac{2x+3}{6}\)

=> \(\frac{x}{30}+\frac{3\left(5x-1\right)}{30}=\frac{2\left(x-8\right)}{30}-\frac{5\left(2x+3\right)}{30}\)

=> \(x+3\left(5x-1\right)=2\left(x-8\right)-5\left(2x+3\right)\)

=> \(x+15x-3=2x-16-10x-15\)

=> \(x+15x-3-2x+16+10x+15=0\)

=> \(24x+28=0\)

=> \(x=\frac{-28}{24}=\frac{-7}{6}\)

Vậy phương trình có nghiệm là \(x=\frac{-7}{6}\) .

b, Ta có : \(\frac{x+4}{5}-x+4=\frac{x}{3}-\frac{x-2}{2}\)

=> \(\frac{6\left(x+4\right)}{30}-\frac{30x}{30}+\frac{120}{30}=\frac{10x}{30}-\frac{15\left(x-2\right)}{30}\)

=> \(6\left(x+4\right)-30x+120=10x-15\left(x-2\right)\)

=> \(6x+24-30x+120=10x-15x+30\)

=> \(6x+24-30x+120-10x+15x-30=0\)

=> \(-19x+114=0\)

=> \(x=\frac{-114}{-19}=6\)

Vậy phương trình có nghiệm là x = 6 .

3 tháng 8 2017

a Đ

b S

c S

d Đ

3 tháng 8 2017

a ) S 

b ) Đ

c ) S

d ) Đ

k cho mk nhé