quy đồng mẫu rồi so sánh các phân số sau :
a}\(\frac{-29}{60}\)và \(\frac{-789}{3131}\)b}\(\frac{11}{2^3x3^4x5^2}\)và \(\frac{29}{2^2x3^4x5^3}\)c}\(\frac{1}{n}\)và \(\frac{1}{n+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
a) \(x+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}=5\)
\(x+\frac{64}{128}+\frac{32}{128}+\frac{16}{128}+\frac{8}{128}+\frac{4}{128}+\frac{2}{128}+\frac{1}{128}=5\)
\(x+\frac{127}{128}=5\)
\(x=5-\frac{127}{128}=\frac{513}{128}\)
b) \(x+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}+\frac{1}{2187}=3\)
\(x+\frac{729}{2187}+\frac{243}{2187}+\frac{81}{2187}+\frac{27}{2187}+\frac{9}{2187}+\frac{3}{2187}+\frac{1}{2187}=3\)
\(x+\frac{2186}{2187}=3\)
\(x=3-\frac{2186}{2187}=\frac{4375}{2187}\)
2)
a) \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(=1-\frac{1}{6}=\frac{5}{6}\)
b) \(5\frac{1}{2}+3\frac{5}{6}+\frac{2}{3}\)
\(=\left(5+3\right)+\left(\frac{1}{2}+\frac{2}{3}+\frac{5}{6}\right)\)
\(=8+\left(\frac{3}{6}+\frac{4}{6}+\frac{5}{6}\right)\)
\(=8+2=10\)
c) \(7\frac{7}{8}+1\frac{4}{6}+3\frac{3}{5}\)
\(=\left(7+1+3\right)+\left(\frac{7}{8}+\frac{2}{3}+\frac{3}{5}\right)\)
\(=11+\left(\frac{105}{120}+\frac{80}{120}+\frac{72}{120}\right)\)
\(=11+\frac{257}{120}=\frac{1577}{120}\)
3) Gọi số đó là x. Theo đề ta có :
\(\frac{16-x}{21+x}=\frac{5}{7}\)
\(7\left(16-x\right)=5\left(21+x\right)\)
\(112-7x=105+5x\)
\(112-105=7x-5x\)
\(7=2x\)
\(x=\frac{7}{2}=3,5\) ( vô lí )
Vậy không có số tự nhiên để thõa mãn điều kiện trên.
a)
i.Ta có: BCNN(12, 30) = 60
60 : 12 = 5; 60 : 30 = 2. Do đó:
\(\frac{5}{{12}} = \frac{{5.5}}{{12.5}} = \frac{{25}}{{60}}\) và \(\frac{7}{{30}} = \frac{{7.2}}{{30.2}} = \frac{{14}}{{60}}.\)
ii.Ta có: BCNN(2, 5, 8) = 40
40 : 2 = 20; 40 : 5 = 8; 40 : 8 = 5. Do đó:
\(\frac{1}{2} = \frac{{1.20}}{{2.20}} = \frac{{20}}{{40}}\)
\(\frac{3}{5} = \frac{{3.8}}{{5.8}} = \frac{{24}}{{40}}\)
\(\frac{5}{8} = \frac{{5.5}}{{8.5}} = \frac{{25}}{{40}}\).
b)
i.Ta có: BCNN(6, 8) = 24
24 : 6 = 4; 24: 8 = 3. Do đó
\(\begin{array}{l}\frac{1}{6} + \frac{5}{8} = \frac{{1.4}}{{6.4}} + \frac{{5.3}}{{8.3}}\\ = \frac{4}{{24}} + \frac{{15}}{{24}} = \frac{{19}}{{24}}.\end{array}\)
ii. Ta có: BCNN(24, 30) = 120
120: 24 = 5; 120: 30 = 4. Do đó:
\(\begin{array}{l}\frac{{11}}{{24}} - \frac{7}{{30}} = \frac{{11.5}}{{24.5}} - \frac{{7.4}}{{30.4}}\\ = \frac{{55}}{{120}} - \frac{{28}}{{120}} = \frac{{27}}{{120}} = \frac{9}{{40}}\end{array}\)
a) $\frac{3}{2} = \frac{{3 \times 3}}{{2 \times 3}} = \frac{9}{6}$
Quy đồng mẫu số hai phân số $\frac{3}{2}$ và $\frac{5}{6}$ được $\frac{9}{6}$ và $\frac{5}{6}$
b) $\frac{1}{3} = \frac{{1 \times 2}}{{3 \times 2}} = \frac{2}{6}$
Quy đồng mẫu số hai phân số $\frac{1}{3}$ và $\frac{5}{6}$ được $\frac{2}{6}$ và $\frac{5}{6}$
c) $\frac{2}{5} = \frac{{2 \times 2}}{{5 \times 2}} = \frac{4}{{10}}$
Quy đồng mẫu số hai phân số $\frac{2}{5}$ và $\frac{7}{{10}}$ được $\frac{4}{{10}}$ và $\frac{7}{{10}}$