Tìm a, b, c, d \(\in\)N* để \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}=1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Làm tạm một câu rồi đi chơi, lát làm cho.
4)
Áp dụng bất đẳng thức Cauchy-Schwarz :
\(VT\ge\frac{\left(1+1+1\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}=\frac{9}{\left(a+b+c\right)^2}\ge\frac{9}{1}=9\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)
a) Đặt A=\(\frac{x^2-1}{x^2}\)
Ta có:
\(\Rightarrow A=\frac{x^2}{x^2}-\frac{1}{x^2}\)
\(\Rightarrow A=1-\frac{1}{x^2}\)
\(\Rightarrow x\in Z\) để thỏa mãn A<0
b)\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
=>(a^2+b^2)*cd=(c^2+d^2)*ab
a^2cd+b^2cd=abc^c+abd^2
a^2cd+b^2cd-c^2ab-d^2ab=0
(a^2cd-abd^2+(b^2cd-abc^2)=0
ad(ac-bd)-bc(ac-bd)=0
(ad-bc)(ac-bd)=0
=>ad-bc=0 hoặc ac-bd=0
ad=bc ac=bd
=>a/b=c/d hoặc a/d=b/c
\(VT\ge\frac{\left(a+b+c+d\right)^2}{a+b+c+d-4}\)
Đặt \(a+b+c+d-4=x>0\Rightarrow VT\ge\frac{\left(x+4\right)^2}{x}=\frac{x^2+8x+16}{x}\)
\(VT\ge x+\frac{16}{x}+8\ge2\sqrt{\frac{16x}{x}}+8=16\)
Dấu "=" xảy ra khi \(x=4\) hay \(a=b=c=d=2\)
3a) ta có \(\frac{a^2}{a+b}=a-\frac{ab}{a+b}>=a-\frac{ab}{2\sqrt{ab}}=a-\frac{\sqrt{ab}}{2}\)
vì \(a,b>0,a+b>=2\sqrt{ab}nên\frac{ab}{a+b}< =\frac{ab}{2\sqrt{ab}}\)
tương tự \(\frac{b^2}{b+c}=b-\frac{bc}{b+c}>=b-\frac{bc}{2\sqrt{bc}}=b-\frac{\sqrt{bc}}{2}\)
tương tự \(\frac{c^2}{c+a}=c-\frac{ca}{c+a}>=c-\frac{ca}{2\sqrt{ca}}=c-\frac{\sqrt{ca}}{2}\)
cộng từng vế BĐT ta được \(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}>=a+b+c-\frac{\sqrt{ab}}{2}-\frac{\sqrt{bc}}{2}-\frac{\sqrt{ca}}{2}=\frac{2a+2b+2c-\sqrt{ab}-\sqrt{bc}-\sqrt{ca}}{2}\left(1\right)\)
giả sử \(\frac{2a+2b+2c-\sqrt{ab}-\sqrt{bc}-\sqrt{ca}}{2}>=\frac{a+b+c}{2}\)
<=> \(2a+2b+2c-\sqrt{ab}-\sqrt{bc}-\sqrt{ca}>=a+b+c\)
<=> \(a+b+c-\sqrt{ab}-\sqrt{bc}-\sqrt{ca}>=0\)
<=> \(2a+2b+2c-2\sqrt{ab}-2\sqrt{bc}-2\sqrt{ca}>=0\)
<=> \(\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{a}-\sqrt{c}\right)^2>=0\)
(đúng với mọi a,b,c >0) (2)
(1),(2)=> \(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}>=\frac{a+b+c}{2}\left(đpcm\right)\)