cho tam giác ABC nhọn về phía ngoài của tam giác. Vẽ tam giác đều ACD, nhận AC làm cạnh và tam giác đều ABE, nhận AB làm cạnh.
a) CM: CE=BD
b) Gọi O là giao điểm của BD và CE. Tính số đo góc BOC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BN TỰ VẼ HÌNH NHA dương minh tuấn !!!!!!
a. BM // AC \(\Rightarrow\) \(\frac{AD}{DB}=\frac{AC}{MB}\)
\(\Rightarrow\frac{AD}{AD+DB}=\frac{AC}{AC+MB}\)
\(\Rightarrow\frac{AD}{AB}=\frac{AC}{AC+AB}\left(1\right)\)
\(CN\) // \(AB\Rightarrow\frac{AE}{EC}=\frac{AB}{CN}\Rightarrow\frac{AE}{AE+EC}=\frac{AB}{AB+CN}\)
\(\Rightarrow\frac{AE}{AC}=\frac{AB}{AB+AC}\Rightarrow\frac{AE}{AB}=\frac{AC}{AC+AB}\left(2\right)\)
TỪ (1) VÀ (2) \(\Rightarrow\frac{AD}{AB}=\frac{AE}{AB}\Rightarrow AD=AE\)
vì \(\widehat{BAC}=60^0\)
nên \(\Delta AED\) là tam giác đều
b. theo hướng chứng minh trên :
\(\frac{AD}{DB}=\frac{AC}{MB}=\frac{AC}{AB}\left(3\right)\)
\(\frac{AE}{EC}=\frac{AB}{CN}=\frac{AB}{AC}\left(4\right)\)
Từ (3) và (4) \(\Rightarrow\frac{AD}{DB}=\frac{EC}{AE}\Rightarrow AD^2=DB.EC=4.9\)
\(AD=6\Rightarrow DE=6\)
a: Xét ΔBAD và ΔEAC có
BA=EA
\(\widehat{BAD}=\widehat{EAC}\)
AD=AC
Do đó: ΔBAD=ΔEAC
Suy ra: BD=EC
b: \(\widehat{BOC}=90^0\)