cho a+b+c=1
chứng minh ab/ab+c +bc/bc+a +ac/ac+b >_ 3/4
bài này dùng cô si nha các bạn giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H E K D
P/S:mk vẽ hình hơi xấu thông cảm >:
a,Xét \(\Delta ADE\)và\(\Delta ACB\)có:
\(AB=AE\left(gt\right)\)
\(AC=AD\left(gt\right)\)
Góc \(EAD\)= Góc \(BAC\left(gt\right)\)
\(=>\Delta ADE=\Delta ACB\left(c-g-c\right)\)
\(=>ED=BC\)(2 cạnh tương ứng)
b,Xét \(\Delta\)vuông \(AKE\)và\(\Delta\)vuông \(AHB\)có:
\(AB=AE\left(gt\right)\)
Góc \(ABH\)\(=\)Góc \(AEK\)
\(=>\Delta AKE=\Delta AHB\left(ch-gn\right)\)
\(=>BH=EK\)(2 cạnh tương ứng)
c,Ta có : Góc \(EAK\)= Góc \(BAH\)(cm câu b) (1)
Lại có : Góc \(EAD\)= Góc \(BAC\)(gt) (2)
Do : +) Góc \(EAK\)+ Góc \(DAK\)= Góc \(EAD\)(3)
+) Góc \(BAH\)+ Góc \(CAH\)= Góc \(BAC\)(4)
Từ 1 ; 2 ; 3 và 4 \(=>\)Góc \(CAH\)= Góc \(DAK\)(ĐPCM)
Dễ thấy với a,b >0 thì (a+b)/2 ≥ √ab <=> 1/(a+b) ≤ 1/4 (1/a +1/b)
Áp dụng bất đẳng thức Cauchy ta được
1/(a+2b+3c)=1/[(a+c)+2(b+c)]≤ 1/4[1/(a+c)+1/2(b+c)] (lại áp dụng tiếp được)
≤ 1/16a+1/16c+1/32b+1/32c
=1/16a+1/32b+3/32c
Trường hợp này dấu "=" xảy ra <=> a+c=2(b+c);a=c;b=c <=> c= 0 mâu thuẩn giả thiết
Do đó dấu "=" không xảy ra
Thế thì 1/(a+2b+3c)<1/16a+1/32b+3/32c (1)
Tương tự 1/( b+2c+3a)<1/16b+1/32c+3/32a (2)
1/ ( c+2a+3b) < 1/16c+1/32a+3/32b (3)
Cộng (1)(2)(3) cho ta
1/( a+2b+3c) + 1/( b+2c+3a) + 1/ ( c+2a+3b) <(1/16+1/32+3/32)(1/a+1/b+1/c)
=3/16*(ab+bc+ca)abc= 3/16
tk nha mk trả lời đầu tiên đó!!!