K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2022

a) Xét tam giác ABC có: AB = AC (gt).

\(\Rightarrow\) Tam giác ABC cân tại A.

\(\Rightarrow\) \(\widehat{ABC}=\widehat{ACB}.\Rightarrow\widehat{ABI}=\widehat{ACI.}\)

Xét tam giác ABC cân tại A có: AI là trung tuyến (I là trung điểm BC).

\(\Rightarrow\) AI là tia phân giác của \(\widehat{BAC}\) (Tính chất các đường trong tam giác cân).

b) Ta có: MI = BM + BI; NI = CN + CI.

Mà BM = Cn (gt); BI = CI (I là trung điểm BC).

\(\Rightarrow\) MI = NI.

Xét tam giác ABC cân tại A có: AI là trung tuyến (I là trung điểm BC).

\(\Rightarrow\) AI là đường cao (Tính chất các đường trong tam giác cân).

\(\Rightarrow\) \(AI\perp BC\Rightarrow\widehat{AIM}=\widehat{AIN}=90^o.\)

Xét tam giác AIM và tam giác AIN có:

AI chung.

\(\widehat{AIM}=\widehat{AIN}\left(cmt\right).\)

MI = NI (cmt).

\(\Rightarrow\) Tam giác AIM = Tam giác AIN (c - g - c).

\(\Rightarrow\) AM = AN (2 cạnh tương ứng).

a: xét ΔABI và ΔACI có

AB=AC

AI chung

BI=CI

Do đó: ΔABI=ΔACI

Ta có: ΔABC cân tại A

mà AI là đường trung tuyến

nên AI là đường phân giác

b: Xét ΔABM và ΔACN có

AB=AC

\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó: ΔABM=ΔACN

Suy ra: AM=AN

 

a: Xét ΔABI và ΔACI có 

AB=AC

\(\widehat{BAI}=\widehat{CAI}\)

AI chung

Do đó: ΔABI=ΔACI

Ta có: ΔABC cân tại A

mà AI là đường trung tuyến

nên AI là đường phân giác

b: Xét ΔABM và ΔACN có 

AB=AC

\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó: ΔABM=ΔACN

Suy ra: AM=AN

c: Ta có: ΔABC cân tại A

mà AI là đường trung tuyến

nên AI là đường cao

6 tháng 1 2022

mình chưa học đến bài tam giác cân thì có bài làm nào khác không ạ?

 

\(a,Xét.\Delta ABI=\Delta ACI:\\ AB=AC\\ AI.chung\\ BI=CI\\ \rightarrow\Delta.....=\Delta....\left(c.c.c\right)\\ \Rightarrow\widehat{BAI}=\widehat{CAI};\widehat{ABI}=\widehat{ACi}\\ \rightarrow AI.là.phâ.giác.của.\widehat{BAC}\\ b,\widehat{ABI}=\widehat{ACI}\left(chứng.minh.trên\right)\\ Ta.có:\) 

\(\widehat{ABM}=180^0-\widehat{ABI}\\ \widehat{ACN}=180^0-\widehat{ACI} \\ \Rightarrow\widehat{ABM}=\widehat{ACN}\\ Xét.\Delta ABM.và.\Delta ACN.có:\\ AB=AC\\ \widehat{ABM}=\widehat{ACN}\\ BM=CN\\ \rightarrow\Delta...=\Delta...\left(c.g.c\right)\\ \Rightarrow AM=AN\) 

\(c,Vì.\Delta ABI=\Delta ACI\\ \rightarrow\widehat{AIB}=\widehat{AIC}\\ Ta.có:\widehat{AIB}+\widehat{AIC}=180^0\\ \rightarrow\widehat{AIB}=\widehat{AIC}=\dfrac{180}{2}=90^0\\ \rightarrow AI\perp BC\) 

Câu c sai đề mình sửa lại r đó:)

12 tháng 12 2020

lấy công thức ra 

25 tháng 12 2019
ccccc 
ccccccc 
  
24 tháng 12 2016

Ta có hình vẽ sau:

B A C I M N

a/ Xét ΔABI và ΔACI có:

AI: Cạnh chung

AB = AC (gt)

BI = CI (gt)

=> ΔABI = ΔACI (c.c.c) (đpcm)

=> \(\widehat{BAI}=\widehat{CAI}\) (2 góc tương ứng)

=> AI là tia p/g của \(\widehat{BAC}\) (đpcm)

b/ Vì AB = AC => ΔABC cân => \(\widehat{ABC}=\widehat{ACB}\)

\(\widehat{ABC}+\widehat{ABM}=180^o\) (kề bù)

\(\widehat{ACB}+\widehat{ACN}=180^o\) (kề bù)

=> \(\widehat{ABM}=\widehat{ACN}\)

Xét ΔABM và ΔACN có:

BM = CN (gt)

\(\widehat{ABM}=\widehat{ACN}\left(cmt\right)\)

AB = AC (gt)

=> ΔABM = ΔACN (c.g.c)

=> AM = AN(2 cạnh tương ứng) (đpcm)

c/ Vì ΔABI = ΔACI (ý a)

=> \(\widehat{AIB}=\widehat{AIC}\) (2 cạnh tương ứng)

\(\widehat{AIB}+\widehat{AIC}=180^o\) (kề bù)

=> \(\widehat{AIB}=\widehat{AIC}=\frac{180^o}{2}=90^o\)

=> \(AI\perp BC\left(đpcm\right)\)

24 tháng 12 2016

ta có hình vẽ sau:

Hỏi đáp Toán

a) xét \(\Delta ABI\)\(\Delta ACI\) có:

\(AB=AC\left(gt\right)\)

\(I\) là cạnh chung

\(BI=CI\left(gt\right)\)

\(\Rightarrow\Delta ABI=\Delta ACI\left(c.c.c\right)\)

\(\Delta ABI=\Delta ACI\) nên \(\widehat{ABI}=\widehat{ACI}\) (hai góc tương ứng)

\(I\in BC\left(gt\right)\)\(BI=CI\left(gt\right)\) nên \(AI\) là tia phân giác của \(\widehat{BAC}\)

c) \(I\) là trung điểm của \(BC\) (1)

\(\widehat{AIB}+\widehat{AIC}=180^o\) (2)

Từ (1) và (2) \(\Rightarrow AI\perp BC\)

\(\Rightarrow\widehat{AIB}=\widehat{AIC}\) hay \(\widehat{AIM}=\widehat{AIN}\) ( vì \(N;M\in BC\)\(CN=BM\left(gt\right)\))

\(\Rightarrow IM=IN\) (hai cạnh tương ứng)

b) xét \(\Delta AIM\)\(\Delta AIN\) có:

\(AI\) là cạnh chung

\(\widehat{AIM}=\widehat{AIN}=90^o\) \(\left(cmt\right)\)

\(IM=IN\left(cmt\right)\)

\(\Rightarrow\Delta AIM=\Delta AIN\left(c.g.c\right)\)

\(\Rightarrow AM=AN\) (2 cạnh tương ứng)

 

 

 

 

 

 

 

15 tháng 12 2023

a: Xét ΔABI và ΔACI có

AB=AC

BI=CI

AI chung

Do đó: ΔABI=ΔACI

=>\(\widehat{BAI}=\widehat{CAI}\)

mà tia AI nằm giữa hai tia AB,AC

nên AI là phân giác của \(\widehat{BAC}\)

b: Ta có: BN+NM=BM

CM+MN=CN

mà BM=CN

nên BN=CM

Xét ΔANB và ΔAMC có

AB=AC

\(\widehat{ABN}=\widehat{ACM}\)

BN=CM

Do đó: ΔANB=ΔAMC

=>AM=AN

c: Ta có: ΔAIB=ΔAIC

=>\(\widehat{AIB}=\widehat{AIC}\)

mà \(\widehat{AIB}+\widehat{AIC}=180^0\)(hai góc kề bù)

nên \(\widehat{AIB}=\widehat{AIC}=\dfrac{180^0}{2}=90^0\)

=>AI\(\perp\)BC
d: Xét ΔAMN có AM=AN

nên ΔAMN cân tại A

Ta có: ΔAMN cân tại A

mà AI là đường cao

nên AI là đường trung trực của MN