K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2022

\(\dfrac{4}{x}+\dfrac{9}{3}=\dfrac{5}{6}\)
\(\dfrac{4}{x}=\dfrac{5}{6}-\dfrac{9}{3}=\dfrac{-13}{6}\)
\(4\times6=-13\times x\)
\(-13x=24\)
\(x=\dfrac{-24}{13}\)
\(Vậy...\)

2:

a: 5/x-y/3=1/6

=>\(\dfrac{15-xy}{3x}=\dfrac{1}{6}\)

=>\(\dfrac{30-2xy}{6x}=\dfrac{x}{6x}\)

=>30-2xy=x

=>x(2y+1)=30

=>(x;2y+1) thuộc {(30;1); (-30;-1); (10;3); (-10;-3); (6;5); (-6;-5)}

=>(x,y) thuộc {(30;0); (-30;-1); (10;1); (-10;-2); (6;2); (-6;-3)}

b: x/6-2/y=1/30

=>\(\dfrac{xy-12}{6y}=\dfrac{1}{30}\)

=>\(\dfrac{5xy-60}{30y}=\dfrac{y}{30y}\)

=>5xy-60=y

=>y(5x-1)=60

=>(5x-1;y) thuộc {(-1;-60); (4;15); (-6;-10)}(Vì x,y là số nguyên)

=>(x,y) thuộc {(0;-60); (1;15); (-1;-10)}

12 tháng 7 2023

bài 1 ???

20 tháng 4 2019

cái này dễ quá aaa

20 tháng 4 2019

dễ thì làm đi

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2...
Đọc tiếp

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố

2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố

3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương

4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p

5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2 = ab  +c ( a + b )

Chứng minh: 8c + 1 là số cp

6, Cho các số nguyên dương phân biệt x,y sao cho ( x – y )^4 = x^3 – y^3

Chứng minh: 9x – 1 là lập phương đúng

7, Tìm các số nguyên tố a,b,c sao cho a^2 + 5ab + b^2 = 7^c

8, Cho các số nguyên dương x,y thỏa mãn x > y và ( x – y, xy + 1 ) = ( x + y, xy – 1 ) = 1

Chứng minh: ( x + y )^2 + ( xy – 1 )^2  không phải là số cp

9, Tìm các số nguyên dương x,y và số ngtố p để x^3 + y^3 = p^2

10, Tìm tất cả các số nguyên dương n để 49n^2 – 35n – 6 là lập phương 1 số nguyên dương

11, Cho các số nguyên n thuộc Z, CM:

A = n^5 - 5n^3 + 4n \(⋮\)30

B = n^3 - 3n^2 - n + 3 \(⋮\)48 vs n lẻ

C = n^5 - n \(⋮\)30
D = n^7 - n \(⋮\)42

0
16 tháng 11 2021

Bài 1: 

a: \(\Leftrightarrow x\cdot\left(-11\right)=121\)

hay x=-11

28 tháng 11 2023

Giup mình với ah.

1- Tính :

A= 5. | x- 5 | - 3x + 1

2 - Tìm các số nguyên x,y ; sao cho :

a) 5/x - y/3 = 1/6                        b) 5/x + y/4 = 1/8

3- Tìm giá trị lớn nhất của Q = 27-2x/12-x ( x là số nguyên)

---------------------------------------------------------------------------------------------

28 tháng 11 2023

1) \(A=5.\left|x-5\right|-3x+1\)

\(A=\left[{}\begin{matrix}5.\left(x-5\right)-3x+1\left(x-5\ge0\right)\\5.\left(5-x\right)-3x+1\left(x-5< 0\right)\end{matrix}\right.\)

\(A=\left[{}\begin{matrix}5x-25-3x+1\left(x\ge5\right)\\25-5x-3x+1\left(x< 5\right)\end{matrix}\right.\)

\(A=\left[{}\begin{matrix}2x-24\left(x\ge5\right)\\26-8x\left(x< 5\right)\end{matrix}\right.\)

29 tháng 11 2023

3:

\(Q=\dfrac{27-2x}{12-x}=\dfrac{2x-27}{x-12}\)

\(\Leftrightarrow Q=\dfrac{2x-24-3}{x-12}=2-\dfrac{3}{x-12}\)

Để Q lớn nhất thì \(2-\dfrac{3}{x-12}\) lớn nhất

=>\(\dfrac{3}{x-12}\) nhỏ nhất

=>x-12 là số nguyên âm lớn nhất

=>x-12=-1

=>x=11

Vậy: \(Q_{min}=2-\dfrac{3}{11-12}=2+3=5\) khi x=11

Bài 2:

a: \(\dfrac{5}{x}-\dfrac{y}{3}=\dfrac{1}{6}\)

=>\(\dfrac{15-xy}{3x}=\dfrac{1}{6}\)

=>\(15-xy=\dfrac{x}{2}\)

=>\(30-2xy=x\)

=>x+2xy=30

=>x(2y+1)=30

mà x,y nguyên

nên \(\left(x;2y+1\right)\in\left\{\left(30;1\right);\left(-30;-1\right);\left(2;15\right);\left(-2;-15\right);\left(10;3\right);\left(-10;-3\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(30;0\right);\left(-30;-1\right);\left(2;7\right);\left(-2;-8\right);\left(10;1\right);\left(-10;-2\right)\right\}\)

b: \(\dfrac{5}{x}+\dfrac{y}{4}=\dfrac{1}{8}\)

=>\(\dfrac{20+xy}{4x}=\dfrac{1}{8}\)

=>\(\dfrac{40+2xy}{8x}=\dfrac{x}{8x}\)

=>40+2xy=x

=>x-2xy=40

=>x(1-2y)=40

mà x,y nguyên

nên \(\left(x;1-2y\right)\in\left\{\left(40;1\right);\left(-40;-1\right);\left(8;5\right);\left(-8;-5\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(40;0\right);\left(-40;1\right);\left(8;-2\right);\left(-8;3\right)\right\}\)

8 tháng 12 2018

\(\frac{x}{3}-\frac{4}{y}=\frac{1}{5}\)

\(\Rightarrow\frac{4}{y}=\frac{x}{3}-\frac{1}{5}\)

\(\Rightarrow\frac{4}{y}=\frac{5x-3}{15}\)

\(\Rightarrow4.15=y\left(5x-3\right)\)

\(\Rightarrow y\left(5x-3\right)=60\)

Ta có : 60 = 1.60 = 60.1 = 2.30= 30.2 = 5.12 = 12.5 = 6.10 = 10.6 = 3. 20 = 20.3

Vì 5x-3 là số lẻ => 5x - 3 \(\in\){1; -1; 5; -5; 3; -3}

Lập bảng :

y60-6012-1220-20
5x - 31-15-53-3
x4/52/58/5-2/56/50

Vì x và y là số nguyên nên ta có x = 0 , y = -20
 

21 tháng 12 2023

Bài 1:

Thay \(x\) = 6y vào biểu thức ta có:

|6y| - |y| = 60

|5y| = 60

5.|y| = 60

   |y| = 60 : 5

   |y| = 12

   \(\left[{}\begin{matrix}y=-12\\y=12\end{matrix}\right.\)

⇒ \(\left[{}\begin{matrix}x=-72\\x=72\end{matrix}\right.\)

Kết luận:

Các cặp \(x;y\) nguyên thỏa mãn đề bài là:

(\(x;y\)) = (-72; -12); (72; 12)

12 tháng 11 2023

Bài 1

a) (x + 3)(x + 2) = 0

x + 3 = 0 hoặc x + 2 = 0

*) x + 3 = 0

x = 0 - 3

x = -3 (nhận)

*) x + 2 = 0

x = 0 - 2

x = -2 (nhận)

Vậy x = -3; x = -2

b) (7 - x)³ = -8

(7 - x)³ = (-2)³

7 - x = -2

x = 7 + 2

x = 9 (nhận)

Vậy x = 9

12 tháng 11 2023

Thanks