tìm các số nguyên x y sao cho 4/x+9/3=5/6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2:
a: 5/x-y/3=1/6
=>\(\dfrac{15-xy}{3x}=\dfrac{1}{6}\)
=>\(\dfrac{30-2xy}{6x}=\dfrac{x}{6x}\)
=>30-2xy=x
=>x(2y+1)=30
=>(x;2y+1) thuộc {(30;1); (-30;-1); (10;3); (-10;-3); (6;5); (-6;-5)}
=>(x,y) thuộc {(30;0); (-30;-1); (10;1); (-10;-2); (6;2); (-6;-3)}
b: x/6-2/y=1/30
=>\(\dfrac{xy-12}{6y}=\dfrac{1}{30}\)
=>\(\dfrac{5xy-60}{30y}=\dfrac{y}{30y}\)
=>5xy-60=y
=>y(5x-1)=60
=>(5x-1;y) thuộc {(-1;-60); (4;15); (-6;-10)}(Vì x,y là số nguyên)
=>(x,y) thuộc {(0;-60); (1;15); (-1;-10)}
Bài 1:
a: \(\Leftrightarrow x\cdot\left(-11\right)=121\)
hay x=-11
Giup mình với ah.
1- Tính :
A= 5. | x- 5 | - 3x + 1
2 - Tìm các số nguyên x,y ; sao cho :
a) 5/x - y/3 = 1/6 b) 5/x + y/4 = 1/8
3- Tìm giá trị lớn nhất của Q = 27-2x/12-x ( x là số nguyên)
---------------------------------------------------------------------------------------------
1) \(A=5.\left|x-5\right|-3x+1\)
\(A=\left[{}\begin{matrix}5.\left(x-5\right)-3x+1\left(x-5\ge0\right)\\5.\left(5-x\right)-3x+1\left(x-5< 0\right)\end{matrix}\right.\)
\(A=\left[{}\begin{matrix}5x-25-3x+1\left(x\ge5\right)\\25-5x-3x+1\left(x< 5\right)\end{matrix}\right.\)
\(A=\left[{}\begin{matrix}2x-24\left(x\ge5\right)\\26-8x\left(x< 5\right)\end{matrix}\right.\)
3:
\(Q=\dfrac{27-2x}{12-x}=\dfrac{2x-27}{x-12}\)
\(\Leftrightarrow Q=\dfrac{2x-24-3}{x-12}=2-\dfrac{3}{x-12}\)
Để Q lớn nhất thì \(2-\dfrac{3}{x-12}\) lớn nhất
=>\(\dfrac{3}{x-12}\) nhỏ nhất
=>x-12 là số nguyên âm lớn nhất
=>x-12=-1
=>x=11
Vậy: \(Q_{min}=2-\dfrac{3}{11-12}=2+3=5\) khi x=11
Bài 2:
a: \(\dfrac{5}{x}-\dfrac{y}{3}=\dfrac{1}{6}\)
=>\(\dfrac{15-xy}{3x}=\dfrac{1}{6}\)
=>\(15-xy=\dfrac{x}{2}\)
=>\(30-2xy=x\)
=>x+2xy=30
=>x(2y+1)=30
mà x,y nguyên
nên \(\left(x;2y+1\right)\in\left\{\left(30;1\right);\left(-30;-1\right);\left(2;15\right);\left(-2;-15\right);\left(10;3\right);\left(-10;-3\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(30;0\right);\left(-30;-1\right);\left(2;7\right);\left(-2;-8\right);\left(10;1\right);\left(-10;-2\right)\right\}\)
b: \(\dfrac{5}{x}+\dfrac{y}{4}=\dfrac{1}{8}\)
=>\(\dfrac{20+xy}{4x}=\dfrac{1}{8}\)
=>\(\dfrac{40+2xy}{8x}=\dfrac{x}{8x}\)
=>40+2xy=x
=>x-2xy=40
=>x(1-2y)=40
mà x,y nguyên
nên \(\left(x;1-2y\right)\in\left\{\left(40;1\right);\left(-40;-1\right);\left(8;5\right);\left(-8;-5\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(40;0\right);\left(-40;1\right);\left(8;-2\right);\left(-8;3\right)\right\}\)
\(\frac{x}{3}-\frac{4}{y}=\frac{1}{5}\)
\(\Rightarrow\frac{4}{y}=\frac{x}{3}-\frac{1}{5}\)
\(\Rightarrow\frac{4}{y}=\frac{5x-3}{15}\)
\(\Rightarrow4.15=y\left(5x-3\right)\)
\(\Rightarrow y\left(5x-3\right)=60\)
Ta có : 60 = 1.60 = 60.1 = 2.30= 30.2 = 5.12 = 12.5 = 6.10 = 10.6 = 3. 20 = 20.3
Vì 5x-3 là số lẻ => 5x - 3 \(\in\){1; -1; 5; -5; 3; -3}
Lập bảng :
y | 60 | -60 | 12 | -12 | 20 | -20 |
5x - 3 | 1 | -1 | 5 | -5 | 3 | -3 |
x | 4/5 | 2/5 | 8/5 | -2/5 | 6/5 | 0 |
Vì x và y là số nguyên nên ta có x = 0 , y = -20
Bài 1:
Thay \(x\) = 6y vào biểu thức ta có:
|6y| - |y| = 60
|5y| = 60
5.|y| = 60
|y| = 60 : 5
|y| = 12
\(\left[{}\begin{matrix}y=-12\\y=12\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}x=-72\\x=72\end{matrix}\right.\)
Kết luận:
Các cặp \(x;y\) nguyên thỏa mãn đề bài là:
(\(x;y\)) = (-72; -12); (72; 12)
Bài 1
a) (x + 3)(x + 2) = 0
x + 3 = 0 hoặc x + 2 = 0
*) x + 3 = 0
x = 0 - 3
x = -3 (nhận)
*) x + 2 = 0
x = 0 - 2
x = -2 (nhận)
Vậy x = -3; x = -2
b) (7 - x)³ = -8
(7 - x)³ = (-2)³
7 - x = -2
x = 7 + 2
x = 9 (nhận)
Vậy x = 9
\(\dfrac{4}{x}+\dfrac{9}{3}=\dfrac{5}{6}\)
\(\dfrac{4}{x}=\dfrac{5}{6}-\dfrac{9}{3}=\dfrac{-13}{6}\)
\(4\times6=-13\times x\)
\(-13x=24\)
\(x=\dfrac{-24}{13}\)
\(Vậy...\)