Giari ptr
a/2x(3x-1)=6x^2-13
b/\(\dfrac{x}{3}-\dfrac{2x+1}{6}=\dfrac{x}{6}-x\)
Giups mk vs ạ ai nhanh mk tick nha ><
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
ĐKĐB \(\Leftrightarrow a+\frac{1}{b}=b+\frac{1}{c}=c+\frac{1}{a}\)
\(\Rightarrow \left\{\begin{matrix} a-b=\frac{b-c}{bc}\\ b-c=\frac{c-a}{ac}\\ c-a=\frac{a-b}{ab}\end{matrix}\right.\)
\(\Rightarrow (a-b)(b-c)(c-a)=\frac{(b-c)(c-a)(a-b)}{a^2b^2c^2}\)
Vì $a,b,c$ đôi 1 khác nhau nên $a^2b^2c^2=1$. Khi đó:
\(P=(5.1^3-8.1+2)^{2020}=(-1)^{2020}=1\)
ta có: f(x) + g(x) = ( 7 x^6 - 6x ^5 +5x^4 -4x^3 +3x^2 -2x +1) - ( x - 2x^2 +3x^3 - 4x^4 + 5x^5 - 6x^6)
\(=7x^6-6x^5+5x^4-4x^3+3x^2-2x+1-x+2x^2-3x^3+4x^4-5x^5+6x^6\)
\(=\left(7x^6+6x^6\right)-\left(6x^5+5x^5\right)+\left(5x^4+4x^4\right)-\left(4x^3+3x^3\right)+\left(3x^2+2x^2\right)-\left(2x+x\right)+1\)
\(=13x^6-11x^5+9x^4-7x^3+5x^2-3x+1\)
Chúc bn học tốt !!!!!!
Uhhhhhhhhhhhhhhhhhhhhhhhhhh😥😥😥😥😥😥😥😥😥😥😥????????????...............
Không đúng
theo mk nghĩ là bài này áp dụng dãy tỉ số = nhau
c: \(\Leftrightarrow2x+2x-6=12-2x\)
=>4x-6=12-2x
=>6x=18
hay x=3
b: \(\Leftrightarrow\left(x-1\right)\left(x+1\right)+x=2x-1\)
\(\Leftrightarrow x^2-1+x=2x-1\)
=>x2-x=0
=>x(x-1)=0
=>x=0(loại) hoặc x=1(nhận)
PT 2
\(\Leftrightarrow\dfrac{3}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}+\dfrac{2x}{\left(x-2\right)\left(x-3\right)}-\dfrac{1}{\left(x-1\right)\left(x-2\right)}=0\) ( \(x\ne1;x\ne2;x\ne3\))
\(\Leftrightarrow\dfrac{3+2x^2-2x-x+3}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}=0\)
\(\Rightarrow2x^2-3x+6=0\)
=> PT vô nghiệm.
Từ x=\(\dfrac{1}{2}\)a+\(\dfrac{1}{2}\)b+\(\dfrac{1}{2}\)c=\(\dfrac{1}{2}\).(a+b+c)\(\Rightarrow\)2x=(a+b+c)
M=(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)+x\(^2\)
= x\(^2\)-xb-ax+ab+x\(^2\)-xc-bx+bc+x\(^2\)-ax-cx+ac+x\(^2\)
= 4x\(^2\)-2ac-2bx-2cx+ab+bc+ac
= 4x\(^2\)-2x(a+b+c)+ab+bc+ca
Thay 2x=a+b+c,ta được:
M= 4x\(^2\)-2x.2c+ab+bc+ca
M= 4x\(^2\)-4x\(^2\)+ab+bc+ca
M= ab+bc+ca
a: \(=\dfrac{x+3}{\left(x-1\right)\left(x+1\right)}-\dfrac{1}{x\left(x+1\right)}\)
\(=\dfrac{x^2+3x-x+1}{x\left(x-1\right)\left(x+1\right)}=\dfrac{\left(x+1\right)^2}{x\left(x-1\right)\left(x+1\right)}=\dfrac{x+1}{x\left(x-1\right)}\)
b: \(=\dfrac{24y^5}{7x^2}\cdot\dfrac{-21x}{12y^3}=2y^2\cdot\dfrac{-3}{x}=\dfrac{-6y^2}{x}\)
c: \(=\dfrac{-3\left(x-1\right)}{\left(x+1\right)^2}\cdot\dfrac{x+1}{6\left(x-1\right)\left(x+1\right)}=\dfrac{-1}{2\left(x+1\right)}\)
d: \(=\dfrac{7x+2}{3\left(2x-y\right)}\cdot\dfrac{6x\left(2x-y\right)}{2\left(7x+2\right)}=x\)
\(=\left(x-\dfrac{1}{3}\right)\left(\dfrac{4}{3}x+\dfrac{1}{9}-x+\dfrac{1}{3}\right)\\ =\left(x-\dfrac{1}{3}\right)\left(\dfrac{1}{3}x+\dfrac{4}{9}\right)\\ =\dfrac{1}{3}x^2+\dfrac{4}{9}x-\dfrac{1}{9}x-\dfrac{4}{27}\\ =\dfrac{1}{3}x^2+\dfrac{1}{3}x-\dfrac{4}{27}\)
a) \(6x^2-2x-6x^2+13=0\\ -2x=-13\\ x=\dfrac{13}{2}\)
b: =>2x-2x-1=x-6x
=>-5x=-1
hay x=1/5