K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2016

xét H(x)=0=>x^2+7x-8=0

\(H\left(x\right)=x^2-x+8x-8=0\)

\(=>x\left(x-1\right)+8\left(x-1\right)=0\)

\(=>\left(x+8\right)\left(x-1\right)=0\)

=>_x+8=0=>x=-8

   |_  x-1=0=>x=1

vậy nghiệm của ......

21 tháng 4 2016

xét H(x)=0=>x^2+7x-8=0

$H\left(x\right)=x^2-x+8x-8=0$H(x)=x2−x+8x−8=0

$=>x\left(x-1\right)+8\left(x-1\right)=0$=>x(x−1)+8(x−1)=0

$=>\left(x+8\right)\left(x-1\right)=0$=>(x+8)(x−1)=0

=>_x+8=0=>x=-8

   |_  x-1=0=>x=1

vậy nghiệm của ......

19 tháng 4 2022

Cho `H(x) = 0`

`=> 2x^2 + x = 0`

`=> x ( 2x + 1 ) = 0`

`@TH1: x = 0`

`@TH2: 2x + 1 = 0 => x = [-1] / 2`

Vậy nghiệm của đa thức `H(x)` là: `0` hoặc `[-1] / 2`

19 tháng 4 2022

\(\text{Đặt }H\left(x\right)=0\)

\(\Rightarrow2x^2+x=0\)

\(\Rightarrow x\left(2x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\2x+1=0\Rightarrow2x=0-1=-1\Rightarrow x=\left(-1\right):2=\dfrac{-1}{2}\end{matrix}\right.\)

\(\text{Vậy đa thức H(x) có 2 nghiệm là x=0;x=}\dfrac{-1}{2}\)

5 tháng 4 2022

cho H(x)=0

\(=>2x^2+x=0\)

\(=>x\left(2x+1\right)=0=>\left[{}\begin{matrix}x=0\\2x+1=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{2}\end{matrix}\right.\)

 

5 tháng 4 2022

I(x)=0

\(=>4x^3-x=0=>4.x.x.x-x=0\)

\(=>x\left(4x^2-1\right)=0\)

\(=>\left[{}\begin{matrix}x=0\\4x^2-1=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x^2=\dfrac{1}{4}\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\)

12 tháng 5 2022

Ta có \(x^2-7x+8=0\Leftrightarrow x^2-\dfrac{2.7}{2}x+8=0\)

\(\Leftrightarrow x^2-7x+\dfrac{49}{4}-\dfrac{49}{4}+8=0\Leftrightarrow\left(x-\dfrac{7}{2}\right)^2-\dfrac{17}{4}=0\)

\(\left[{}\begin{matrix}x-\dfrac{7}{2}=\dfrac{\sqrt{17}}{2}\\x-\dfrac{7}{2}=-\dfrac{\sqrt{17}}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{17}+7}{2}\\x=\dfrac{-\sqrt{17}+7}{2}\end{matrix}\right.\)

Đặt \(x^2-7x+8=0\)

\(\Delta=\left(-7\right)^2-4\cdot1\cdot8=17>0\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{7-\sqrt{17}}{2}\\x_2=\dfrac{7+\sqrt{17}}{2}\end{matrix}\right.\)

Đặt \(x^2-7x+8=0\)

\(\Delta=\left(-7\right)^2-4\cdot1\cdot8=17>0\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{7-\sqrt{17}}{2}\\x_2=\dfrac{7+\sqrt{17}}{2}\end{matrix}\right.\)

10 tháng 6 2020

\(f\left(x\right)=x2-7x+6\)

ta có f(x)=0

hay\(x2-7x+6=0\)

\(\Leftrightarrow x2-7x=-6\)

\(\Leftrightarrow x\left(-5\right)=-6\)

\(\Leftrightarrow x=\frac{6}{5}\)

vậy nghiệm của đa thức f(x) là 6/5

10 tháng 6 2020

\(f\left(x\right)=x^2-7x+6\)

\(f\left(x\right)=0\Leftrightarrow x^2-7x+6=0\)

                   \(\Leftrightarrow x^2-x-6x+6=0\)

                   \(\Leftrightarrow x.\left(x-1\right)-6.\left(x-1\right)=0\)

                   \(\Leftrightarrow\left(x-1\right).\left(x-6\right)=0\)

                   \(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-6=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}z=1\\x=6\end{cases}}\)

Vậy phương trình có 2 nghiệm \(x=\left\{1,6\right\}\)

11 tháng 4 2023

Phân tích đa thức thành nhân tử thôi bạn :

Ta có :

\(h\left(x\right)=x^2+5x+6\)

\(h\left(x\right)=x\left(x+2\right)+3\left(x+2\right)\)

\(h\left(x\right)=\left(x+2\right)\left(x+3\right)\)

\(\Rightarrow N_oh\left(x\right)=-2;-3\)

\(g\left(x\right)=2x^2+7x-9\)

\(g\left(x\right)=2x^2+9x-2x-9\)

\(g\left(x\right)=2x\left(x-1\right)+9\left(x-1\right)\)

 

\(g\left(x\right)=\left(x-1\right)\left(2x+9\right)\)

\(\Rightarrow N_og\left(x\right)=1;-4,5\)

11 tháng 4 2023

ko biet

 

12 tháng 8 2021

Phần nào bạn ko nhìn thấy thì bảo mk nhé

undefinedundefined

12 tháng 8 2021

Ko có phần d nhé

phần e  thêm "=0" vào cuối nhé

24 tháng 5 2021

a) A(x) = 6x3-x(x+2)+4(x+3)

            = 6x3-x2+2x+12

B(x) = -x(x+1)-(4-3x)+x2(x-2)

        = -(x2)-x-4+3x+x3-2x2

        = x3-3x2+2x-4

b) C(x) = 6x3-x2+2x+12+x3-3x2+2x-4-7x3+4x2=0

            ⇒ 4x+8=0

            ⇒ 4x = -8

            ⇒ x = -2

Vậy nghiệm của đa thức C(x) là 2

31 tháng 3 2017

a) \(f\left(x\right)=x^2+7x-8=0\)

\(\Leftrightarrow f\left(x\right)=x^2-x+8x-8=0\)

\(\Leftrightarrow f\left(x\right)=\left(x^2-x\right)+\left(8x-8\right)=0\)

\(\Leftrightarrow f\left(x\right)=x\left(x-1\right)+8\left(x-1\right)=0\)

\(\Leftrightarrow f\left(x\right)=\left(x-1\right)\left(x+8\right)=0\)

\(\Rightarrow x-1=0\) hoặc  \(x+8=0\)

Nếu \(x-1=0\Rightarrow x=1\) 

Nếu  \(x+8=0\Rightarrow x=-8\)

Vậy đa thức f(x) có nghiệm là 1 và -8

b) \(k\left(x\right)=5x^2+9x+4=0\)

\(\Leftrightarrow k\left(x\right)=5x^2+5x+4x+4=0\)

\(\Leftrightarrow k\left(x\right)=\left(5x^2+5x\right)+\left(4x+4\right)=0\)

\(\Leftrightarrow k\left(x\right)=5x\left(x+1\right)+4\left(x+1\right)=0\)

\(\Leftrightarrow k\left(x\right)=\left(x+1\right)\left(5x+4\right)=0\)

\(\Rightarrow x+1=0\) hoặc \(5x+4=0\)

Nếu \(x+1=0\Rightarrow x=-1\)

Nếu \(5x+4=0\Rightarrow x=-\frac{4}{5}\)

Vậy đa thức k(x) có nghiệm là -1 và -4/5