K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2022

\(\dfrac{1}{2}+\dfrac{-1}{3}+\dfrac{-2}{3}\le x< \dfrac{-3}{5}+\dfrac{1}{6}+\dfrac{-2}{5}+\dfrac{3}{2}\)

\(\Leftrightarrow\dfrac{1}{2}+\left(\dfrac{-1}{3}+\dfrac{-2}{3}\right)\le x< \left(\dfrac{-3}{5}+\dfrac{-2}{5}\right)+\left(\dfrac{1}{6}+\dfrac{3}{2}\right)\)

\(\Leftrightarrow\dfrac{1}{2}+\left(-1\right)\le x< -1+\dfrac{5}{3}\)

\(\Leftrightarrow\dfrac{-1}{2}\le x< \dfrac{2}{3}\)

\(\Leftrightarrow\dfrac{-3}{6}\le x< \dfrac{4}{6}\)

\(\Leftrightarrow x\in\left\{-3;-2;-1;0;1;2;3\right\}\)

21 tháng 1 2022

⇔x∈{−3;−2;−1;0;1;2;3}

a: ĐểA nguyên thì x^2+2x+x+2-3 chia hết cho x+2

=>-3 chia hết cho x+2

=>x+2 thuộc {1;-1;3;-3}

=>x thuộc {-1;-3;1;-5}

b: B nguyên khi x^2+x+3 chia hết cho x+1

=>3 chia hết cho x+1

=>x+1 thuộc {1;-1;3;-3}

=>x thuộc {0;-2;2;-4}

21 tháng 1 2021

undefined

21 tháng 1 2021

Bổ sung phần c và d luôn:

c, C = \(\dfrac{2}{5}\)

\(\Leftrightarrow\) \(\dfrac{x^2-1}{2x^2+3}\) = \(\dfrac{2}{5}\)

\(\Leftrightarrow\) 5(x2 - 1) = 2(2x2 + 3)

\(\Leftrightarrow\) 5x2 - 5 = 4x2 + 6

\(\Leftrightarrow\) x2 = 11

\(\Leftrightarrow\) x2 - 11 = 0

\(\Leftrightarrow\) (x - \(\sqrt{11}\))(x + \(\sqrt{11}\)) = 0

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x-\sqrt{11}=0\\x+\sqrt{11}=0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=\sqrt{11}\left(TM\right)\\x=-\sqrt{11}\left(TM\right)\end{matrix}\right.\)

d, Ta có: \(\dfrac{x^2-1}{2x^2+3}\) = \(\dfrac{x^2+\dfrac{3}{2}-\dfrac{5}{2}}{2\left(x^2+\dfrac{3}{2}\right)}\) = \(\dfrac{1}{2}\) - \(\dfrac{5}{4\left(x^2+\dfrac{3}{2}\right)}\)

C nguyên \(\Leftrightarrow\) \(\dfrac{5}{4\left(x^2+\dfrac{3}{2}\right)}\) nguyên \(\Leftrightarrow\) 5 \(⋮\) 4(x2 + \(\dfrac{3}{2}\))

\(\Leftrightarrow\) 4(x2 + \(\dfrac{3}{2}\)\(\in\) Ư(5)

Xét các TH:

4(x2 + \(\dfrac{3}{2}\)) = 5 \(\Leftrightarrow\) x2 = \(\dfrac{-1}{4}\) \(\Leftrightarrow\) x2 + \(\dfrac{1}{4}\) = 0 (Vô nghiệm)

4(x2 + \(\dfrac{3}{2}\)) = -5 \(\Leftrightarrow\) x2 = \(\dfrac{-11}{4}\) \(\Leftrightarrow\) x2 + \(\dfrac{11}{4}\) = 0 (Vô nghiệm)

4(x2 + \(\dfrac{3}{2}\)) = 1 \(\Leftrightarrow\) x2 = \(\dfrac{-5}{4}\) \(\Leftrightarrow\) x2 + \(\dfrac{5}{4}\) = 0 (Vô nghiệm)

4(x2 + \(\dfrac{3}{2}\)) = -1 \(\Leftrightarrow\) x2 = \(\dfrac{-7}{4}\) \(\Leftrightarrow\) x2 + \(\dfrac{7}{4}\) = 0 (Vô nghiệm)

Vậy không có giá trị nào của x \(\in\) Z thỏa mãn C \(\in\) Z

Chúc bn học tốt! (Ko bt đề sai hay ko nữa :v)

1 tháng 12 2021

\(a,P=\dfrac{2x^2+2x+2+2x-1+x^2+6x+2}{\left(x-1\right)\left(x^2+x+1\right)}\\ P=\dfrac{3x^2+10x+3}{\left(x-1\right)\left(x^2+x+1\right)}\)

a) Ta có: \(A=\left(\dfrac{2}{\sqrt{x}-3}+\dfrac{2\sqrt{x}}{x-4\sqrt{x}+3}\right):\dfrac{2\left(x-2\sqrt{x}+1\right)}{\sqrt{x}-1}\)

\(=\dfrac{2\left(\sqrt{x}-1\right)+2\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}:\dfrac{2\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)}\)

\(=\dfrac{4\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{1}{2\left(\sqrt{x}-1\right)}\)

\(=\dfrac{2\sqrt{x}-1}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)^2}\)

11 tháng 4 2023

a,A = \(\dfrac{3}{x-1}\)

\(\in\) Z \(\Leftrightarrow\)  3 ⋮ \(x-1\)  ⇒ \(x-1\) \(\in\) { -3; -1; 1; 3}

                                    \(x\) \(\in\) { -2; 0; 2; 4}

b, B =  \(\dfrac{x-2}{x+3}\)  

\(\in\) Z \(\Leftrightarrow\) \(x-2\) \(⋮\) \(x+3\) ⇒ \(x+3-5\) \(⋮\) \(x+3\)

                                   ⇒               5  \(⋮\) \(x+3\)

                                  \(x+3\) \(\in\){ -5; -1; 1; 5}

                                  \(x\) \(\in\) { -8; -4; -2; 2}

11 tháng 4 2023

a.\(A=\dfrac{3}{x-1}\)có giá trị là 1 số nguyên khi \(3\) ⋮ \(x-1.\)

\(\Rightarrow x-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}.\)

Ta có bảng:

  \(x-1\)      \(1\)    \(-1\)      \(3\)    \(-3\)
     \(x\)      \(2\)       \(0\)      \(4\)    \(-2\)
      TM     TM    TM    TM

Vậy \(x\in\left\{-2;0;2;4\right\}.\)

b.\(B=\dfrac{x-2}{x+3}\)có giá trị là 1 số nguyên khi \(x-2\) ⋮ \(x+3.\)

\(\Rightarrow\left(x+3\right)-5⋮x+3.\) 

Mà x+3 ⋮ x+3 \(\Rightarrow\) Ta cần: \(-5⋮x+3\Rightarrow x+3\inƯ\left(-5\right)=\left\{\pm1;\pm5\right\}.\) 
Ta có bảng:

  \(x+3\)      \(1\)    \(-1\)      \(5\)     \(-5\)
     \(x\)   \(-2\)    \(-4\)      \(2\)     \(-8\)
     TM    TM    TM    TM

Vậy \(x\in\left\{-8;-4;-2;2\right\}.\)
 

 

28 tháng 10 2023

3/ Ta có:

\(A=\dfrac{1-2x}{x+3}\)

\(A=\dfrac{-2x+1}{x+3}\)

\(A=\dfrac{-2x-6+7}{x+3}\)

\(A=\dfrac{-2\left(x+3\right)+7}{x+3}\)

\(A=-2+\dfrac{7}{x+3}\)

A nguyên khi \(\dfrac{7}{x+3}\) nguyên 

⇒ 7 ⋮ \(x+3\)

\(\Rightarrow x+3\inƯ\left(7\right)\)

\(\Rightarrow x+3\in\left\{1;-1;7;-7\right\}\)

\(\Rightarrow x\in\left\{-2;-4;4;-10\right\}\)

AH
Akai Haruma
Giáo viên
20 tháng 2 2023

Lời giải:

$\frac{5}{x}-\frac{y}{3}=\frac{1}{6}$

$\Rightarrow \frac{15-xy}{3x}=\frac{1}{6}$

$\Rightarrow \frac{2(15-xy)}{6x}=\frac{x}{6x}$

$\Rightarrow 2(15-xy)=x$

$\Rightarrow 30=2xy+x$

$\Rightarrow 30=x(2y+1)$

$\Rightarrow x=\frac{30}{2y+1}$

Vì $x$ nguyên nên $\frac{30}{2y+1}$ nguyên

$\Rightarrow 2y+1$ là ước của $30$

Vì $2y+1$ lẻ nên $2y+1\in\left\{\pm 1; \pm 3; \pm 5; \pm 15\right\}$

$\Rightarrow y\in\left\{-1; 0; -2; 1; -3; 2; -8; 7\right\}$

Tương ứng với các giá trị $y$ trên ta có: $x\in\left\{-30; 30; -10; 10; -6; 6; -2;2\right\}$