CM
\(\frac{1}{6}<\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+....+\frac{1}{100^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt 1/5^2+1/6^2+...+1/100^2=A
ta có: \(A<\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+..+\frac{1}{99}-\frac{1}{100}=\frac{1}{4}-\frac{1}{100}<\frac{1}{4}\left(1\right)\)
\(A>\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+..+\frac{1}{100.101}=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+..+\frac{1}{100}-\frac{1}{101}=\frac{1}{5}-\frac{1}{101}>\frac{1}{6}\left(do\frac{1}{5}>\frac{1}{6}\right)\left(2\right)\)
từ (1);(2)=>1/6<A<1/4
=>đpcm
\(A=\left(\frac{1}{5}+\frac{1}{6}+...+\frac{1}{9}\right)+\left(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{17}\right)\)
\(\Rightarrow A< \left(\frac{1}{5}+\frac{1}{5}+...+\frac{1}{5}\right)+\left(\frac{1}{10}+\frac{1}{10}+...+\frac{1}{10}\right)\)
( 5 số hạng 1/5 ; 8 số hạng 1/10 )
\(\)\(\Rightarrow A< 5\cdot\frac{1}{5}+8\cdot\frac{1}{10}\)
\(\Rightarrow A< 2\)
\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}< \frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=50.\frac{1}{100}=\frac{1}{2}< \frac{5}{6}\)
Vậy \(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}< \frac{5}{6}\)
\(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
\(...\)
\(\frac{1}{100^2}< \frac{1}{99.100}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+...+\frac{1}{99.100}\)
Mình chỉ làm được đến đây thôi. Sorry nha. À mà bạn thử vào trang này xem https://vn.answers.yahoo.com/question/index?qid=20121102064330AAkYsXP
1/5^2 + 1/6^2 + 1/7^2 + ... + 1/100^2
< 1/4×5 + 1/5×6 + 1/6×7 + ... + 1/99×100
< 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7 + ... + 1/99 - 1/100
< 1/4 - 1/100 < 1/4 ( đpcm)
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{199}+\frac{1}{200}\right)-\left(1+\frac{1}{2}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
Ta có :
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{199}-\frac{1}{200}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{199}+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{199}+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\left(đpcm\right)\)
Chúc bạn học tốt !!!