cách chia đường tròn không xác định tâm thành 4 phần bằng nhau với kích thước cho trước là AB=BC=CD=DA=64 cm. biết 4 điểm A,B,C,D nằm trên đường tròn đó ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ABOC có
\(\widehat{ABO}+\widehat{ACO}=90^0+90^0=180^0\)
=>ABOC là tứ giác nội tiếp đường tròn đường kính OA
=>A,B,O,C cùng thuộc (I), I là trung điểm của OA
b: Xét ΔOBA vuông tại B có \(sinBAO=\dfrac{BO}{OA}=\dfrac{1}{2}\)
nên \(\widehat{BAO}=30^0\)
Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AO là phân giác của góc BAC
=>\(\widehat{BAC}=2\cdot\widehat{BAO}=60^0\)
Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AB=AC
Xét ΔABC có AB=AC và \(\widehat{BAC}=60^0\)
nên ΔABC đều
c: Ta có: ΔBOA vuông tại B
=>\(\widehat{BOA}+\widehat{BAO}=90^0\)
=>\(\widehat{BOA}=90^0-30^0=60^0\)
Xét ΔBIO có IO=IB
nên ΔIBO cân tại I
Xét ΔIBO cân tại I có \(\widehat{IOB}=60^0\)
nên ΔIBO đều
=>BI=OI=R
=>\(I\in\left(O\right)\)
Ta có: BI=R
mà BI=CI
nên CI=R
=>OB=BI=CI=OC
=>OBIC là hình thoi
=>BI//OC