Cho tam giác ABC cân tại A. Đường trung trực của AC cắt AB ở D. Biết CD là phân giác của góc ACB. Tính các góc của tam giác ACB.
dễ ợt mà..............
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì đường trung trực của `AC` cắt `AB` tại `D.`
`@` Theo tính chất của đường trung trực (điểm nằm trên đường trung trực của `1` đoạn thẳng thì cách `2` đầu mút đoạn thẳng đó)
`-> \text {DA = DC}`
Xét `\Delta ACD`: `\text {DA = DC}`
`-> \Delta ACD` cân tại `D.`
`-> \hat {A} = \hat {ACD}` `(1)`
Vì `\text {CD}` là tia phân giác của $\widehat {ACB} (g$$t)$
`->` $\widehat {ACD} = \widehat {BCD} =$ `1/2` $\widehat {ACB}$ `(2)`
Từ `(1)` và `(2)`
`->` $\widehat {ACB} = \widehat {2C_2} = \widehat {2A}$
Mà `\hat {A}=35^0`
`->` $\widehat {ACB}$`=35^0*2=70^0`
Xét `\Delta ABC`:
$\widehat {BAC} + \widehat {ABC}+ \widehat {ACB}=180^0 (\text {định lý tổng 3 góc trong 1 tam giác})$
`-> 35^0+` $\widehat {ABC} + 70^0=180^0$
`->` $\widehat {ABC}= 180^0-35^0-70^0=75^0$
Xét các đáp án trên `-> C (tm)`.
Một ca nô xuôi dòng từ bến A đến bến B với vận tốc thực là 25,5 km/giờ. Tới bến B, ca nô nghỉ 5 giờ 40 phút rồi quay lại ngược về bến A với vận tốc cũ thì gặp 1 chiếc phao cùng xuất phát từ bến A trôi theo dòng nước. Hỏi nơi gặp nhau cách bến A bao nhiêu ki-lô-mét? (Biết vận tốc dòng nước là 4,5 km/giờ và quãng sông AB dài 120km )
Đáp số đúng là:
A. 58km