K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2017

\(A=\frac{n^3-9}{n^3+1}=\frac{n^3+1-10}{n^3+1}=\frac{n^3+1}{n^3+1}-\frac{10}{n^3+1}=1-\frac{10}{n^3+1}\)

\(B=\frac{n^3-8}{n^3+2}=\frac{n^3+2-10}{n^3+2}=\frac{n^2+2}{n^2+2}-\frac{10}{n^2+2}=1-\frac{10}{n^3+2}\)

Vì \(n^3+2>n^3+1\Rightarrow\frac{10}{n^3+2}< \frac{10}{n^3+1}\Rightarrow1-\frac{10}{n^3+2}>1-\frac{10}{n^3+1}\Rightarrow B>A\)

AH
Akai Haruma
Giáo viên
19 tháng 8 2023

Bài 2:

Với $n$ chẵn thì $n+4$ chẵn

$\Rightarrow (n+4)(n+7)$ là số chẵn

Với $n$ lẻ thì $n+7$ chẵn

$\Rightarrow (n+4)(n+7)$ là số chẵn

Vậy $(n+4)(n+7)$ chẵn với mọi số tự nhiên $n$ (đpcm)

AH
Akai Haruma
Giáo viên
19 tháng 8 2023

Bài 3:

a. 

$101\vdots x-1$

$\Rightarrow x-1\in\left\{\pm 1; \pm 101\right\}$

$\Rightarrow x\in\left\{0; 2; 102; -100\right\}$

Vì $x\in\mathbb{N}$ nên $x=0, x=2$ hoặc $x=102$

b.

$a+3\vdots a+1$

$\Rightarrow (a+1)+2\vdots a+1$
$\Rightarrow 2\vdots a+1$

$\Rightarrow a+1\in\left\{\pm 1; \pm 2\right\}$

$\Rightarrow a\in\left\{0; -2; 1; -3\right\}$
 

25 tháng 6 2017

Bài 1:

a) \(\frac{\left(-3\right)^n}{81}=9\Leftrightarrow\left(-3\right)^n=9.81=729\Rightarrow\left(-3\right)^n=\left(-3\right)^6\Rightarrow n=6\)

b) \(\frac{125}{5^n}=5^2\Leftrightarrow\frac{125}{5^n}=25\Rightarrow5^n=125:25=5\Rightarrow n=1\)

Bài 2:

a) \(625^5=\left(5^4\right)^5=5^{4.5}=5^{20}\)

\(125^7=\left(5^3\right)^7=5^{3.7}=5^{21}\)

Thấy: \(5^{20}< 5^{21}\Rightarrow625^5< 125^7\)

b) \(3^{2n}=\left(3^2\right)^n=9^n\) ; \(2^{3n}=\left(2^3\right)^n=8^n\)

\(9^n>8^n\Rightarrow3^{2n}>2^{3n}\)

K cho mình nhé.

26 tháng 5 2016

A<B đúng đó