K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2021

1/

a/ TH1: Lấy 1 sp loại A từ lô I có: \(C^1_3\) (cách)

Lấy 1 sp từ 4 sp còn lại từ lô II có: \(C^1_4\) (cách)

\(\Rightarrow C^1_3.C^1_4\) (cách)

TH2: Lấy 1 sp loại A từ lô II có: \(C^1_6\) (cách)

Lấy 1 sp từ 7 sp còn lại từ lô I có: \(C^1_7\) (cách)

\(\Rightarrow C^1_6.C^1_7\) (cách)

Không gian mẫu: \(n\left(\Omega\right)=C^1_{10}.C^1_{10}\)

\(\Rightarrow p\left(M\right)=\dfrac{C^1_6.C^1_7+C^1_3.C^1_4}{C_{10}^1.C^1_{10}}=0,54\)

b/ TH1: Lấy 1 sp loại A từ lô I: \(C^1_3\) (cách)

Lấy 1 sp loại A từ lô II: \(C^1_6\) (cách) 

\(\Rightarrow C^1_3.C^1_6\) (cách)

TH2: Lấy 1 sp từ 7 sp còn lại trong lô I: \(C^1_7\) (cách)

Lấy 1 sp từ 4 sp còn lại trong lô II: \(C^1_4\) (cách)

\(\Rightarrow C^1_7.C^1_4\) (cách)

\(\Rightarrow p\left(O\right)=\dfrac{C_3^1.C_6^1+C^1_7.C^1_4}{C^1_{10}.C^1_{10}}=...\)

Bài 2 mình ko chắc nên ko làm nhé :(

27 tháng 4 2022

Cho mình hỏi bài tập này với

Một gia đình có 6 con, biết rằng khả năng sinh con trai và con gái độc lập với nhau và  có xác suất là 0,5. Một người khách đến thăm thì thấy có 2 con trai đang ở nhà. Tính xác suất gia  đình đó có 

1. Ba con trai. 

2. Tối đa ba con trai 

 
11 tháng 12 2021

giúp mình với

 

NV
11 tháng 12 2021

Gọi A là biến cố "sản phẩm chọn được từ lô 2 là loại A"

\(B_1\) là biến cố "viên bi được lấy ra là viên của hộp 1" \(\Rightarrow P\left(B_1\right)=\dfrac{C_5^1}{C_{20}^1}=\dfrac{1}{4}\)

\(B_2\) là biến cố "viên bi được lấy ra là viên bi của hộp 2" \(\Rightarrow P\left(B_2\right)=\dfrac{C_{15}^1}{C_{20}^1}=\dfrac{3}{4}\)

\(P\left(A|B_1\right)=\dfrac{C_3^1}{C_7^1}=\dfrac{3}{7}\)

\(P\left(A|B_2\right)=\dfrac{C_9^1}{C_{15}^1}=\dfrac{3}{5}\)

Xác suất:

\(P\left(A\right)=\dfrac{1}{4}.\dfrac{3}{7}+\dfrac{3}{4}.\dfrac{3}{5}=\dfrac{39}{70}\)

7 tháng 9 2017

Đáp án A

Lô 1 : Xác suất lấy sản phẩm tốt : 0,6

Xác suất lấy sản phẩm không tốt : 0,4

Lô 2 : Xác suất lấy sản phẩm tốt :0,7

Xác suất lấy sản phẩm không tốt : 0,3

⇒  xác suất để trong hai sản phẩm lấy ra có ít nhất một sản phẩm có chất lượng tốt :

p = 0 , 6.0 , 7 + 0 , 6.0 , 3 + 0 , 7.0 , 4 = 0 , 88

15 tháng 7 2019

2 tháng 8 2018

Đáp án C

Phương pháp giải:

Chia trường hợp của biến cố, áp dụng các quy tắc đếm cơ bản tìm số phần tử của biến cố

Lời giải:

Lấy 6 sản phẩm từ 20 sản phẩm lô hàng có C 20 6 = 38760 cách  ⇒ n ( Ω )   =   38760

Gọi X là biến cố 6 sản phẩm lấy ra có không quá 1 phế phẩm. Khi đó, ta xét các trường hợp sau:

TH1. 6 sản phẩm lấy ra 0 có phế phẩm  nào => có C 16 6 = 8008 cách

TH2. 6 sản phẩm lấy ra có duy nhất 1 phế phẩm => có C 16 5 . C 4 1   =   17472 cách

Suy ra số kết quả thuận lợi cho biến cố X là n(X) = 8008 + 17472 = 25480 

Vậy xác suất cần tính là

26 tháng 7 2017

Đáp án C

Phương pháp giải:

Chia trường hợp của biến cố, áp dụng các quy tắc đếm cơ bản tìm số phần tử của biến cố

Lời giải:

Lấy 6 sản phẩm từ 20 sản phẩm lô hàng có  cách 

Gọi X là biến cố 6 sản phẩm lấy ra có không quá 1 phế phẩm. Khi đó, ta xét các trường hợp sau:

TH1. 6 sản phẩm lấy ra 0 có phế phẩm  nào => có  cách

 

TH2. 6 sản phẩm lấy ra có duy nhất 1 phế phẩm => có  cách

Suy ra số kết quả thuận lợi cho biến cố X là 

Vậy xác suất cần tính là