K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAHB vuông tại H và ΔCHA vuông tạiH có

góc HAB=góc HCA

=>ΔAHB đồng dạng với ΔCHA

c: BK là phân giác

=>AK/CK=BA/BC

ΔAHC có AD là phân giác

nên DH/CD=AH/AC=BA/BC

=>DH/CD=AK/CK

=>KD//AH

a) Xét ΔAHB vuông tại H và ΔCAB vuông tại A có 

\(\widehat{CBA}\) chung

Do đó: ΔAHB\(\sim\)ΔCAB(g-g)

9 tháng 5 2022

a, Xét Δ ABD và Δ ABE, có :

\(\widehat{ADB}=\widehat{AEB}=90^o\)

\(\widehat{BAD}=\widehat{BAE}\) (góc chung)

=> Δ ABD ∾ Δ ABE (g.g)

b, Xét Δ EHB và Δ DHC, có :

\(\widehat{EHB}=\widehat{DHC}\) (đối đỉnh)

\(\widehat{HEB}=\widehat{HDC}=90^o\)

=> Δ EHB ∾ Δ DHC (g.g)

=> \(\dfrac{EH}{DH}=\dfrac{HB}{HC}\)

=> \(HB.HD=HC.HE\)

9 tháng 5 2022

undefined

CHÚC EM HỌC TỐT NHÉok

12 tháng 10 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

a. Xét hai tam giác BNA và CLA, ta có:

∠ BNA = CLA =  90 °

góc A chung

Suy ra ∆ BNA đồng dạng  ∆ CLA (g.g)

Suy ra: AL/AN = AC/AB ⇒ AL/AC = AN/AB

Xét hai tam giác ABC và ANL, ta có:

AL/AC = AN/AB

góc A chung

Suy ra ∆ ABC đồng dạng  ∆ ANL (c.g.c)