K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2016

Nhân vế đó với (2-1) là ra bạn à

19 tháng 4 2021

          Ta gọi tử của phân số B là A ta có:

A=1+2+2^2+2^3+...+2^2008

2A=2 + 2^2 + 2^3 + 2^4 +... + 2^2009

=>A=2^2009 - 1

   A=-1 + 2^2009

          ta thấy tử là số đối của mẫu =>B=\(\dfrac{-1}{1}\)

  

        

19 tháng 4 2021

cảm ơn bạn nhiều

 

30 tháng 4 2021

Đặt A=1+2+22+...+220081+2+22+...+22008

=>2A=2.(1+2+22+...+220081+2+22+...+22008)

=>2A=2+22+23+...+220092+22+23+...+22009

=>2A-A=(2+22+23+...+220092+22+23+...+22009)-(1+2+22+...+220081+2+22+...+22008)

=>A=22009−122009−1

=>A=(-1).(−2)2009(−2)2009+(-1).1

=>A=(-1).[(−2)2009+1][(−2)2009+1]

=>A=(-1).(1−22009)(1−22009)

=>1+2+22+...+220081+2+22+...+22008/1-2200922009

=(−1).(1−22009)1−22009(−1).(1−22009)1−22009=-1

 

 

Giải:

Đặt A=1+2+22+23+...+22008

    2A=2+22+23+24+...+22009

2A-A=(1+2+22+23+...+22008)-(2+22+23+24+...+22009)

    A =1-22009

Vậy B=1-22009/1-22009=1

Chúc bạn học tốt!

16 tháng 9 2021

A \(=\)\(1+2^1+2^2+...+2^{2007}\)

⇒2 A \(=\)\(2+2^2+...+2^{2007}+2^{2008}\)

2A - A \(=\)( \(2+2^2+...+2^{2007}+2^{2008}\) ) - ( \(1+2^1+2^2+...+2^{2007}\) )

A\(=\)\(2^{2008}-1\)

\(3A=3\left(2^{2008}-1\right)\)

      \(=3.2^{2008}-3\)

 

9 tháng 4 2019

24 tháng 8 2019

A = 1 + 2 + 2 2 + . . . + 2 2007

2 A = 2 + 2 2 + . . . + 2 2007 + 2 2008

A = 2A - A =  ( 2 + 2 2 + . . . + 2 2007 + 2 2008 ) - ( 1 + 2 + 2 2 + . . . + 2 2007 ) =  2 2008 - 1

Vậy  A = 2 2008 - 1

21 tháng 9 2023

\(A=1+2+2^2+...+2^{2018}\)

\(2A=2+2^3+2^4+...+2^{2019}\)

\(A=2A-A=1-2^{2019}\)

\(B-A=2^{2019}-\left(1-2^{2019}\right)\)

\(B-A=2^{2019}-1+2^{2019}\)

\(B-A=1\)

`#3107`

\(A=1+2+2^2+2^3+...+2^{2018}\) và \(B=2^{2019}\)

Ta có:

\(A=1+2+2^2+2^3+...+2^{2018}\)

\(2A=2+2^2+2^3+...+2^{2019}\)

\(2A-A=\left(2+2^2+2^3+...+2^{2019}\right)-\left(1+2+2^2+2^3+...+2^{2018}\right)\)

\(A=2+2^2+2^3+...+2^{2019}-1-2-2^2-2^3-...-2^{2018}\)

\(A=2^{2019}-1\)

Vậy, \(A=2^{2019}-1\)

Ta có:

\(B-A=2^{2019}-2^{2019}+1=1\)

Vậy, `B - A = 1.`

26 tháng 8 2021

\(A=1+2+2^2+2^3+2^4+...+2^{99}+2^{100}\)

\(\Rightarrow2A=2+2^2+2^3+2^4+2^5+...+2^{100}+2^{101}\)

\(\Rightarrow2A-A=2^{101}-1\)

\(\Leftrightarrow A=2^{101}-1\)

26 tháng 8 2021

Đặt biểu thức là A

ta có 2A-A=2^101-1

24 tháng 6 2018

A = 47 x 36 + 64 x 47 + 15

A= 47 x ( 64 + 36 ) + 15 = 47 x 100 + 15 = 4700 + 15 = 4715

vậy A= 4715

B= 27+35 + 65 + 73+ 75

B= (27+ 73) + ( 35 + 65) +75

B= 100 +100 +75 = 275

vậy B= 275

C= 37 +37 x 15 +37 x 84 

C= 37 x ( 1+15 +84 )= 37 x 100 = 3700

 vậy C= 3700

D = 1/20x21  +  1/21x22    +    1/22x23    +    1/23x24

D= 1/20   -   1/21   +    1/21  -  1/22   + 1/22   -   1/23  +   1/23   -    1/24

D= 1/20 -1/24 = 1/120 vậy D= 1/120

E= 1/1x2   +  1/2x3 + ...... + 1/49x50

E= 1/1  -   1/2    +    1/2  -   1/3  +...... + 1/49   -   1/50

E = 1 - 1/50 = 49/50 

vậy E= 49/50

 CHÚC HOK TOT

5 tháng 4 2023

a, \(\dfrac{7}{22}\) - \(\dfrac{15}{23}\) + \(\dfrac{2022}{2023}\) - \(\dfrac{8}{23}\) + \(\dfrac{15}{22}\)

= ( \(\dfrac{7}{22}\) + \(\dfrac{15}{22}\)) - ( \(\dfrac{15}{23}+\dfrac{18}{23}\)) + \(\dfrac{2022}{2023}\)

\(\dfrac{22}{22}\) - \(\dfrac{23}{23}\) + \(\dfrac{2022}{2023}\)

= 1 - 1 + \(\dfrac{2022}{2023}\)

\(\dfrac{2022}{2023}\) 

b, - \(\dfrac{2}{11}\) + 5\(\dfrac{5}{6}\) ( 14\(\dfrac{1}{5}\) - 11\(\dfrac{1}{5}\)): 5\(\dfrac{1}{2}\)

= - \(\dfrac{2}{11}\) + \(\dfrac{35}{6}\) ( \(\dfrac{71}{5}\) - \(\dfrac{56}{5}\)) : \(\dfrac{11}{2}\)

= - \(\dfrac{2}{11}\) + \(\dfrac{35}{6}\) . \(\dfrac{15}{5}\) : \(\dfrac{11}{2}\)

= - \(\dfrac{2}{11}\) + \(\dfrac{35}{2}\) \(\times\) \(\dfrac{2}{11}\)

= - \(\dfrac{2}{11}\) + \(\dfrac{35}{11}\)

\(\dfrac{33}{11}\)

= 3 

c, 2000 + { 20 - [ 4.20220 - (32 + 5):2] }

= 2000 + { 20 - [ 4.1 - (9+5):2]}

= 2000 + { 20 - [ 4 - 14 : 2 ]}

= 2000 + { 20 - [ 4 -7]}

= 2000 + { 20 - (-3)}

= 2000 + 23

= 2023

2 tháng 11 2023

a,     A = 1 + 3 + 32 + 33 + ... + 32000

    3.A =  3 + 32 + 33+ 33+... + 32001

    3A - A = 3 + 32 + 33 + ... + 32001 - (1 + 3 + 32 + 33 + ... + 32000)

     2A    = 3 + 32 + 33 + ... + 32001 -  1 - 3 - 32 - 33 - ... - 32000

     2A   = 32001 - 1 

       A   = \(\dfrac{3^{2001}-1}{2}\)