cho tam giac ABC can tai A , co AD la duong trung tuyen (D thuoc BC)
a) chung minh goc DAB=goc DAC
b)ke DM vuong goc voi AB, DN vuong goc voi AC. chung minh DM=DN
c)AD la duong trung truc cua MN
d)MD<DC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBEM vuông tại E và ΔCFM vuông tại F có
MB=MC
\(\widehat{MBE}=\widehat{MCF}\)
Do đó:ΔBEM=ΔCFM
b: Ta có: AE+EB=AB
AF+FC=AC
mà EB=FC
và AB=AC
nên AE=AF
mà ME=MF
nên AM là đường trung trực của EF
c: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường trung trực của BC(1)
Xét ΔABD vuông tại B và ΔACD vuông tại C có
AD chung
AB=AC
Do đó: ΔABD=ΔACD
Suy ra: DB=DC
hay D nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra A,M,D thẳng hàng
a: Xét tứ giác AEMD có
góc AEM=góc ADM=góc DAE=90 độ
nên AEMD là hình chữ nhật
b: Vì M đối xứng với N qua AB
nên ABvuông góc với MN tại E và E là trung điểm của MN
Xét tứ giác AMBN có
E là trung điểm chung của AB và MN
nên AMBN là hình bình hành
mà MA=MB
nên AMBN là hình thoi
c: Xét tứ giác ANMC có
NM//AC
NM=AC
Do đó: ANMC là hình bình hành
=>AM cắt CN tại trung điểm của mỗi đường
=>C,O,N thẳng hàg
A,
xét \(\Delta ABD\)và \(\Delta ACD\)
CÓ \(\hept{\begin{cases}AB=AC\\chungAD\\BD=DC\end{cases}}\)
SUY RA \(\Delta ABD\)=\(\Delta ACD\) (C.C.C) (1)
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)
MÀ \(\widehat{BDA}\)+\(\widehat{CDA}\)=180
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)=90
B, (1) => BC=DC=1/2 BC=8
ÁP DỤNG ĐỊNH LÍ PITAGO TA CÓ
\(AB^2=AD^2+BD^2\)
=> AD^2=36
=>AD=6
a) Xét \(\Delta ABD\) và \(\Delta ACD\)
AB=AC
góc B = góc C
BD= CD
\(\Rightarrow\) \(\Delta ABD\) = \(\Delta ACD\) (c.g.c)
\(\Rightarrow\)góc DAB= góc DAC (2 góc tương ứng)
b) Xét \(\Delta\)AMD và\(\Delta\)ANC:
góc MAD =góc NAD (cmt) (chứng minh ở câu a rồi đó)
AD chung
góc AMD = góc AND= 90o
\(\Rightarrow\) \(\Delta\)AMD = \(\Delta\)ANC (cạnh huyền -góc nhọn)
\(\Rightarrow\) DM=DN
c) Xét \(\Delta\)BMD và \(\Delta\)CND
góc BMD = góc CND=90o
góc MBD= góc NCD
BD= CD
\(\Rightarrow\)\(\Delta\)BMD = \(\Delta\)CND (cạnh huyền _ góc nhọn)
\(\Rightarrow\)BM = CN (2 cạnh tương ứng)
Ta có: AB= AM+BM \(\Rightarrow\)AM= AB- BM
và AC = AN+ CN \(\Rightarrow\)AN= AC-CN
Mà AB = AC và BM = CN
\(\Rightarrow\) AM=AN
\(\Rightarrow\)Tam giác MAN cân tại A
\(\Rightarrow\)Tia phân giác AD là đường trung trực của MN
d) Ta có :\(\Delta\)BMD = \(\Delta\)CND (cmt)
BD = CD (2 cạnh tương ứng)
và MD là cạnh góc vuông của \(\Delta\)BMD
BD là cạnh huyền của \(\Delta\)BMD '
\(\Rightarrow\)MD < BD hay MD < DC
Phù!!!!!!! Cuối cùng cũng xong, k nhé! ~.~
a) vậy phải c/m AD là p/giác nữa
đúng ko ta??????????