x^4+ căn(x^2+2016)=2016
ai giải hộ em vs ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.
ĐKXĐ: \(x\ge0;x\ne4\)
\(A=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\dfrac{3\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\dfrac{12}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x+4\sqrt{x}+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\dfrac{3\sqrt{x}-6}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+2\right)}-\dfrac{12}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x+4\sqrt{x}+4-3\sqrt{x}+6-12}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x+\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}\)
\(\dfrac{4}{3}\cdot\dfrac{9}{8}\cdot\dfrac{16}{15}\cdot...\cdot\dfrac{400}{399}\)
\(=\dfrac{2\cdot2}{1\cdot3}\cdot\dfrac{3\cdot3}{2\cdot4}\cdot\dfrac{4\cdot4}{3\cdot5}\cdot...\cdot\dfrac{20\cdot20}{19\cdot21}\)
\(=\dfrac{2\cdot2\cdot3\cdot3\cdot4\cdot4\cdot...\cdot20\cdot20}{1\cdot3\cdot2\cdot4\cdot3\cdot5\cdot...\cdot19\cdot21}\)
\(=\dfrac{2\cdot3\cdot4\cdot...\cdot20}{1\cdot2\cdot3\cdot...\cdot19}\cdot\dfrac{2\cdot3\cdot4\cdot...\cdot20}{3\cdot4\cdot5\cdot...\cdot21}\)
\(=20\cdot\dfrac{2}{21}\)
\(=\dfrac{40}{21}\)
ĐKXĐ: \(x\ge\frac{1}{2}\)
Chắc pt là thế này:
\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=3\)
\(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}=3\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}=3\)
\(\Leftrightarrow\left|\sqrt{x-1}+1\right|+\left|\sqrt{x-1}-1\right|=3\)
- Nếu \(\sqrt{x-1}-1\ge0\Leftrightarrow x\ge2\)
\(\Leftrightarrow\sqrt{x-1}+1+\sqrt{x-1}-1=3\)
\(\Leftrightarrow\sqrt{x-1}=\frac{3}{2}\Rightarrow x=\frac{13}{4}\) (t/m)
- Nếu \(\frac{1}{2}\le x< 2\)
\(\Leftrightarrow\sqrt{x-1}+1+1-\sqrt{x-1}=3\Leftrightarrow2=3\) (vô lý)
Vậy pt có nghiệm duy nhất \(x=\frac{13}{4}\)
\(x^4+\sqrt{x^2+2016}=2016\)
\(\Leftrightarrow x^4+x^2+\frac{1}{4}=x^2+2016-\sqrt{x^2+2016}+\frac{1}{4}\)
\(\Leftrightarrow\left(x^2+\frac{1}{2}\right)^2=\left(\sqrt{x^2+2016}-\frac{1}{2}\right)^2\)
\(\Leftrightarrow x^2+\frac{1}{2}=\sqrt{x^2+2016}-\frac{1}{2}\text{ }\left(do\text{ }\sqrt{x^2+2016}-\frac{1}{2}>0\right)\)
\(\Leftrightarrow x^2+1=\sqrt{x^2+2016}\)
\(t=x^2\ge0\)
\(\rightarrow t+1=\sqrt{t+2016}\Leftrightarrow t^2+2t+1=t+2016\)
\(\Leftrightarrow t^2+t-2015=0\Leftrightarrow t=\frac{-1+\sqrt{8061}}{2}\text{ }\left(do\text{ }t\ge0\right)\)
\(\Leftrightarrow x=\pm\sqrt{\frac{-1+\sqrt{8061}}{2}}\)