K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2016

vẽ hình đi

ko vẽ ai mà biết được

1. Cho 2 đường tròn (O;R) và (O';r) tiếp xúc ngoài tại A. Kẻ tiếp tuyến chung ngoài BC ($B\in (O), C\in (O')$)a. Tính góc BACb. Tính BC.c. Gọi D là gđ của CA với đường tròn (O) (D khác A). CMR 3 điểm B,O,D thẳng hàngd. Tính BA, CA2. Cho đ B nằm giữa A và Csao cho AB=14cm, BC=28cm. Vẽ về 1 phía của AC các nửa đường tròn tâm I,K,O có đường kính theo thứ tự AB, BC, AC.Tính bán kính...
Đọc tiếp

1. Cho 2 đường tròn (O;R) và (O';r) tiếp xúc ngoài tại A. Kẻ tiếp tuyến chung ngoài BC ($B\in (O), C\in (O')$)

a. Tính góc BAC

b. Tính BC.

c. Gọi D là gđ của CA với đường tròn (O) (D khác A). CMR 3 điểm B,O,D thẳng hàng

d. Tính BA, CA

2. Cho đ B nằm giữa A và Csao cho AB=14cm, BC=28cm. Vẽ về 1 phía của AC các nửa đường tròn tâm I,K,O có đường kính theo thứ tự AB, BC, AC.Tính bán kính đường tròn (M) tiếp xúc ngoài với các nửa đường tròn (I), (K), và tiếp xúc trong với nửa đường tròn (O).

3. Cho đường tròn (O) nội tiếp tam giác đều ABC. 1 tiếp tuyến của đường tròn cắt AB, AC theo thứ tự ở M và N.

a. Tính diện tích AMN biết BC=8cm, MN=3cm

b. CMR: $MN^2=AM^2+AN^2-AM.AN$

c*. Chứng minh rằng: $\frac{AM}{MB}+\frac{AN}{NC}=1$

0
14 tháng 5 2021

a) Vì \(A,M,B\in\left(O\right)\); AB là đường kính

\(\Rightarrow\widehat{AMB}=90^0\)

\(\Rightarrow AM\perp MB\)

Xét tam giác ANB có: BM vừa là đường cao vừa là đường trung bình 

\(\Rightarrow\Delta ANB\)cân tại B

\(\Rightarrow NB=BA\)

\(\Rightarrow N\in\left(C;\frac{BA}{2}\right)\)cố định

b) Vì BM là đường cao của tam giác ABN cân tại B

=> BM là phân giác góc ABN

=> góc ABM= góc NBM

Xét tam giác ARB và tam giác NRB có:

\(\hept{\begin{cases}BRchung\\\widehat{ABM}=\widehat{NBM}\left(cmt\right)\\AB=NB\end{cases}\Rightarrow\Delta ARB=\Delta NRB\left(c-g-c\right)}\)

\(\Rightarrow\widehat{RAB}=\widehat{RNB}=90^0\)

\(\Rightarrow RN\perp BN\)

\(\Rightarrow RN\)là tiếp tuyến của (C)

c) Ta có: A,P,B thuộc (O); AB là đường kính

\(\Rightarrow\widehat{APB}=90^0\)

\(\Rightarrow AP\perp BP\)

\(\Rightarrow RN//AP\)( cùng vuông góc với NB )

Xét tam giác NAB có: \(\hept{\begin{cases}MB\perp AN\\AP\perp BN\end{cases}}\); AP cắt BM tại Q

\(\Rightarrow Q\)là trực tâm tam giác NAB

\(\Rightarrow NQ\perp AB\)

=> NQ // AR(  cùng vuông góc với  AB)

Xét tứ giác ARNQ có:

\(\hept{\begin{cases}AR//NQ\left(cmt\right)\\RN//AP\left(cmt\right)\end{cases}\Rightarrow ARNQ}\)là hình bình hành

Mà 2 đường chéo RQ và AN vuông góc với nhau

=> ARNQ là hình thoi 

1 tháng 12 2016

ta có góc DAB=BAH( tính chất 2 tt cn) và HAC=EAC (----------------)\

Mà góc BAH +HAC =90o => DAB+EAC=90o TA có DAB+EAC+BAH+HAC =DAE

          =>90o +90o=DAE hay DAE =180o mặt khác D,A,E thẳng hàng

CÒN phần b thì chưa làm

4 tháng 1 2018

a) Theo tính chất hai tiếp tuyến cắt nhau ta có:

               AB là tia phân giác của góc HAD  

Suy ra: 
ˆ
D
A
B
=
ˆ
B
A
H
DAB^=BAH^

                  AC là tia phân giác của góc HAE

Suy ra: 
ˆ
H
A
C
=
ˆ
C
A
E
HAC^=CAE^

Ta có: 
ˆ
H
A
D
+
ˆ
H
A
E
=
2
(
ˆ
B
A
H
+
ˆ
H
A
C
)
=
2.
ˆ
B
A
C
=
2.90

=
180

HAD^+HAE^=2(BAH^+HAC^)=2.BAC^=2.90∘=180∘

Vậy ba điểm D, A, E thẳng hàng.

b) Gọi M là trung điểm của BC

Theo tính chất của tiếp tuyến, ta có:

A
D

B
D
;
A
E

C
E
AD⊥BD;AE⊥CE

Suy ra: BD // CE

Vậy tứ giác BDEC là hình thang

Khi đó MA là đường trung bình của hình thang BDEC

Suy ra: 
M
A
/
/
B
D

M
A

D
E
MA//BD⇒MA⊥DE

Trong tam giác vuông ABC ta có: MA = MB = MC

Suy ra M là tâm đường tròn đường kính BC với MA là bán kính

Vậy DE là tiếp tuyến của đường tròn tâm M đường kính BC.