Cho ba nửa hình tròn đường kính AB,AC,BC tiếp xúc nhau từng đôi một, AB = 3cm,AC=1cm. Vẽ 1 hình tròn tiếp xúc với cả ba hình tròn trên ( Tiếp xúc trong với đường tròn đường kính AB) . Tính bán kính đường tròn vẽ thêm.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì \(A,M,B\in\left(O\right)\); AB là đường kính
\(\Rightarrow\widehat{AMB}=90^0\)
\(\Rightarrow AM\perp MB\)
Xét tam giác ANB có: BM vừa là đường cao vừa là đường trung bình
\(\Rightarrow\Delta ANB\)cân tại B
\(\Rightarrow NB=BA\)
\(\Rightarrow N\in\left(C;\frac{BA}{2}\right)\)cố định
b) Vì BM là đường cao của tam giác ABN cân tại B
=> BM là phân giác góc ABN
=> góc ABM= góc NBM
Xét tam giác ARB và tam giác NRB có:
\(\hept{\begin{cases}BRchung\\\widehat{ABM}=\widehat{NBM}\left(cmt\right)\\AB=NB\end{cases}\Rightarrow\Delta ARB=\Delta NRB\left(c-g-c\right)}\)
\(\Rightarrow\widehat{RAB}=\widehat{RNB}=90^0\)
\(\Rightarrow RN\perp BN\)
\(\Rightarrow RN\)là tiếp tuyến của (C)
c) Ta có: A,P,B thuộc (O); AB là đường kính
\(\Rightarrow\widehat{APB}=90^0\)
\(\Rightarrow AP\perp BP\)
\(\Rightarrow RN//AP\)( cùng vuông góc với NB )
Xét tam giác NAB có: \(\hept{\begin{cases}MB\perp AN\\AP\perp BN\end{cases}}\); AP cắt BM tại Q
\(\Rightarrow Q\)là trực tâm tam giác NAB
\(\Rightarrow NQ\perp AB\)
=> NQ // AR( cùng vuông góc với AB)
Xét tứ giác ARNQ có:
\(\hept{\begin{cases}AR//NQ\left(cmt\right)\\RN//AP\left(cmt\right)\end{cases}\Rightarrow ARNQ}\)là hình bình hành
Mà 2 đường chéo RQ và AN vuông góc với nhau
=> ARNQ là hình thoi
ta có góc DAB=BAH( tính chất 2 tt cn) và HAC=EAC (----------------)\
Mà góc BAH +HAC =90o => DAB+EAC=90o TA có DAB+EAC+BAH+HAC =DAE
=>90o +90o=DAE hay DAE =180o mặt khác D,A,E thẳng hàng
CÒN phần b thì chưa làm
a) Theo tính chất hai tiếp tuyến cắt nhau ta có:
AB là tia phân giác của góc HAD
Suy ra:
ˆ
D
A
B
=
ˆ
B
A
H
DAB^=BAH^
AC là tia phân giác của góc HAE
Suy ra:
ˆ
H
A
C
=
ˆ
C
A
E
HAC^=CAE^
Ta có:
ˆ
H
A
D
+
ˆ
H
A
E
=
2
(
ˆ
B
A
H
+
ˆ
H
A
C
)
=
2.
ˆ
B
A
C
=
2.90
∘
=
180
∘
HAD^+HAE^=2(BAH^+HAC^)=2.BAC^=2.90∘=180∘
Vậy ba điểm D, A, E thẳng hàng.
b) Gọi M là trung điểm của BC
Theo tính chất của tiếp tuyến, ta có:
A
D
⊥
B
D
;
A
E
⊥
C
E
AD⊥BD;AE⊥CE
Suy ra: BD // CE
Vậy tứ giác BDEC là hình thang
Khi đó MA là đường trung bình của hình thang BDEC
Suy ra:
M
A
/
/
B
D
⇒
M
A
⊥
D
E
MA//BD⇒MA⊥DE
Trong tam giác vuông ABC ta có: MA = MB = MC
Suy ra M là tâm đường tròn đường kính BC với MA là bán kính
Vậy DE là tiếp tuyến của đường tròn tâm M đường kính BC.
vẽ hình đi
ko vẽ ai mà biết được