Cho a/x+b/y+C/z=2 và x/a+y/b+z/c=0 tính A=a2/x2+b2/y2+c2/z2
ai giup nha gấp ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất các dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=\dfrac{x+y+z}{a+b+c}=\dfrac{x+y+z}{1}\)
\(x=a\left(x+y+z\right)=x^2=a^2.\left(x+y+z\right)^2\)
\(y=b\left(x+y+z\right)=y^2=b^2\left(x+y+z\right)^2\)
\(z=c\left(x+y+z\right)=z^2=c^2.\left(x+y+z\right)^2\)
\(\Rightarrow x^2+y^2+z^2=a^2\left(x+y+z\right)^2+b^2\left(x+y+z\right)^2+c^2\left(x+y+z\right)^2\)
\(=\left(x+y+z\right)^2\left(a^2+b^2+c^2\right)=\left(x+y+z\right)^2\) (do \(a^2+b^2+c^2=1\))
https://lazi.vn/edu/exercise/864720/cho-a-b-c-a2-b2-c2-1-va-x-a-y-b-z-c-chung-minh-rang-x-y-z2-x2-y2-z2
liệt phím? Mù mắt?
Có: \(a+b+c=1\Leftrightarrow\left(a+b+c\right)^2=1\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=\dfrac{x+y+z}{a+b+c}\)
\(\Rightarrow\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}=\dfrac{\left(x+y+z\right)^2}{\left(a+b+c\right)^2}=\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}\)
\(\Rightarrow\left(x+y+z\right)^2=x^2+y^2+z^2\) (do \(\left(a+b+c\right)^2=a^2+b^2+c^2=1\))
\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\) ⇒ \(\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x^2}{a^2}\) = \(\dfrac{y^2}{b^2}\) = \(\dfrac{z^2}{c^2}\) = \(\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}\) = \(\dfrac{x^2+y^2+z^2}{1}\) = \(x^2+y^2+z^2\) (1)
\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=\dfrac{x+y+z}{a+b+c}\) = \(\dfrac{x+y+z}{1}\) = \(x+y+z\)
\(\dfrac{x}{a}\) = \(x+y+z\) ⇒ \(\dfrac{x^2}{a^2}\) = (\(x+y+z\))2 (2)
Từ (1) và (2) ta có :
\(\dfrac{x^2}{a^2}\) = \(x^2\) + y2 + z2 = ( \(x+y+z\))2 (đpcm)
ax=by=cz ⇒ �2�2=�2�2=�2�2a2x2=b2y2=c2z2
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
�2�2a2x2 = �2�2b2y2 = �2�2c2z2 = �2+�2+�2�2+�2+�2a2+b2+c2x2+y2+z2 = �2+�2+�211x2+y2+z2 = �2+�2+�2x2+y2+z2 (1)
��=��=��ax=by=cz Áp dụng tính chất dãy tỉ số bằng nhau ta có:
��=��=��=�+�+��+�+�ax=by=cz=a+b+cx+y+z = �+�+�11x+y+z = �+�+�x+y+z
��ax = �+�+�x+y+z ⇒ �2�2a2x2 = (�+�+�x+y+z)2 (2)
Từ (1) và (2) ta có :
�2�2a2x2 = �2x2 + y2 + z2 = ( �+�+�x+y+z)2 (đpCm)
quy đồng cái thứ 2 thì được
xbc+ayc+abz=0
bình phương cái thứ 1 thì được
\(\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}+2\cdot\left(\frac{ab}{xy}+\frac{bc}{yz}+\frac{ca}{zx}\right)=4\)
suy ra
\(\frac{a^2}{x^2}+...+2\cdot\left(\frac{abz+bcx+cay}{xyz}\right)=4\)
cái trong ngoặc bằng 0 từ đó tìm được
Cho \(\frac{a}{x}=m\)
\(\frac{b}{y}=n\)
\(\frac{c}{z}=p\)
Ta có:m+n+p=2
và \(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}=0\)
<=>\(\frac{mn+np+mp}{mnp}=0\)
<=>\(mn+np+mp=0\)
=>\(\left(m+n+p\right)^2=m^2+n^2+p^2+2mn+2np+2mp\)
<=> \(2^2=m^2+n^2+p^2+2\left(mn+np+mp\right)\)
<=>\(2^2=m^2+n^2+p^2+2.0\)
<=>\(4=m^2+n^2+p^2\)
Chúc bạn học giỏi, nhớ k cho mình nhé!!!