Hình học
Bài1: Cho tam giác ABC vuông tại A, điểm D trên BC. Qua D kẻ DM // AB, và DN // AC . Chứng minh tứ giác AMDN là hình chữ nhật?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tứ giác AMDN có
AM//DN
AN//MD
Do đó: AMDN là hình bình hành
mà \(\widehat{MAN}=90^0\)
nên AMDN là hình chữ nhật
Xét tứ giác AMDN có
AM // DN
AN // MD
Do đó: AMDN là hình bình hành
mà ˆMAN = 900MAN^ = 900
nên AMDN là hình chữ nhật
Xét tứ giác AMDN có
AM//DN
AN//MD
Do đó: AMDN là hình bình hành
mà \(\widehat{MAN}=90^0\)
nên AMDN là hình chữ nhật
mà AM=AN
nên AMDN là hình vuông
Xét tứ giác AMDN có
AM//DN
AN//MD
Do đó: AMDN là hình bình hành
mà \(\widehat{MAN}=90^0\)
nên AMDN là hình chữ nhật
mà AM=AN
nên AMDN là hình vuông
a: Xét tứ giác AMDN có
góc AMD=góc AND=góc MAN=90 độ
=>AMDN là hình chữ nhật
b: Xét ΔABC có
M là trung điểm của BC
MN//AB
=>N là trung điểm của AC
c: Xét tứ giác ADCE có
N là trung điểm chung của AC và DE
Do đó: ADCE là hình bình hành
mà DA=DC
nên ADCE là hình thoi
d: ADCE là hình thoi
=>AE//CD
=>AE//BC
=>AECB là hình thang
Để AECB là hình thang cân thì góc ABC=góc ECB
=>góc ABC=2*góc ACB
mà góc ABC+góc ACB=90 độ
nên góc ABC=2/3*90=60 độ
Ta có DM // AB
AB vuông góc AC
=> DM vuông góc AC
Lại có. DN // AC
AC vuông góc AB
=> DN vuông góc AB
Tứ giác AMDN có
A^= AMD^ = AND^ = 90°
=> tứ giác AMDN là hình chữ nhật