tìm m để \(A=\frac{2n-4}{n+6}-\frac{n-17}{n+6}\)là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) để F thuộc Z
=> \(\frac{n+10}{2n-8}\)thuộc Z
=> n + 10 \(⋮\)2n - 8
=> 2 . ( n + 10 ) \(⋮\)2n - 8
=> 2n + 20 \(⋮\)2n - 8
=> 2n - 8 + 28 \(⋮\)2n - 8 mà 2n - 8 \(⋮\)2n - 8 => 28 \(⋮\)2n - 8
=> 2n - 8 thuộc Ư ( 28 ) = { - 28 ; - 14 ; - 7 ; - 4 ; - 2 ; - 1 ; 1 ; 2 ; 4 ; 7 ; 14 ; 28 }
=> n thuộc { - 10 ; - 3 ; 2 ; 3 ; 5 ;6 ; 11 ; 18 }
\(A=\frac{2n+6}{n+1}=\frac{2n+2+4}{n+1}=\frac{2\left(n+1\right)+4}{n+1}=2+\frac{4}{n+1}\)
Để \(2+\frac{4}{n+1}\) là số nguyên tố <=> \(\frac{4}{n+1}\) là số nguyên tố
Mà n là số tự nhiên => n + 1 thuộc ước nguyên dương của 4
=> Ư(4) = { 1; 2; 4 }
Với n + 1 = 1 => n = 0 => A = 6 ko là số nguyên tố ( loại )
Với n + 1 = 2 => n = 1 => A = 4 ko là số nguyên tố ( loại )
Với n + 1 = 4 => n = 3 => A = 3 là số nguyên tố ( chọn )
Vậy n = 3 thì A là số nguyên tố
Để a là số nguyên tố thì phân số a tối giản
=} ƯCLN của tử và mẫu là 1
Gọi d = ƯCLN(2n+6,n+1)
Khi đó n+1 chia hết cho d =} 2(n+1) chia hết cho d
=} 2n+2 chia hết cho d
Do đó (2n+6) - (2n+2) chia hết cho d
Hay 2n+6-2n-2 chia hết cho d
=} 4 chia hết cho d =} d£ Ư(4) = { 1;2;4 }
Vì 2n+6 chia hết cho 2 mà n+1 ko chia hết cho 2
=} d khác 2
Mik chỉ làm được đến đây thôi
Phần còn lại bạn tự tìm cách chứng minh d=1 nha
cho mik với
=} là suy ra
£ là thuộc
Vì \(n\inℕ\Rightarrow2n+5\ge5\). Lại có \(\frac{6}{2n+5}\)là số nguyên nên suy ra \(2n+5=6\Leftrightarrow n=\frac{1}{2}\)(không thỏa mãn) .
Vậy không tồn tại số tự nhiên \(n\) thỏa mãn yêu cầu bài toán.
Bạn ghi nhỏ lại nhé. Hơn nũa bạn nên tách riêng từng câu hỏi, làm vầy nhiều lắm