Tính giá trị của biểu thức A = 1/6 + 1/12 +1/20 + 1/30 + 1/42 +1/56
giúp mình giải nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1-1-\dfrac{5}{6}+1+\dfrac{7}{12}-1-\dfrac{9}{20}+1+\dfrac{11}{30}-1-\dfrac{13}{42}+1+\dfrac{15}{56}-1-\dfrac{17}{72}+1+\dfrac{19}{90}\)
\(=1-\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}+\dfrac{1}{10}\)
=1/2+1/10
=5/10+1/10=6/10=3/5
`1/2 + 1/6 + 1/12 +1/20 + 1/30 + 1/42`
`=1/(1.2) + 1/(2.3) + 1/(3.4) + 1/(4.5) + 1/(5.6) + 1/(6.7)`
`=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7`
`=1-1/7`
`=6/7`
\(A=\frac{1}{4}+\frac{1}{12}+\frac{1}{36}+\frac{1}{108}+\frac{1}{324}\)
\(3A=3\left(\frac{1}{4}+\frac{1}{12}+\frac{1}{36}+\frac{1}{108}+\frac{1}{324}+\frac{1}{972}\right)\)
\(3A=\frac{3}{4}+\frac{3}{12}+\frac{3}{36}+\frac{3}{108}+\frac{3}{324}+\frac{3}{927}\)
\(3A=\frac{3}{4}+\frac{1}{4}+\frac{1}{12}+\frac{1}{36}+\frac{1}{108}+\frac{1}{324}\)
\(2A=3A-A\)
\(2A=\left(\frac{3}{4}+\frac{1}{4}+\frac{1}{12}+\frac{1}{12}+\frac{1}{36}+\frac{1}{108}+\frac{1}{324}\right)-\left(\frac{1}{4}+\frac{1}{12}+\frac{1}{36}+\frac{1}{108}+\frac{1}{324}+\frac{1}{972}\right)\)
\(2A=\frac{3}{4}-\frac{1}{927}\)
\(2A=\frac{729-1}{972}=\frac{728}{972}=\frac{182}{243}\)
\(A=\frac{182}{243}:\frac{1}{2}\)
\(A=\frac{364}{243}\)
1/2+5/6+11/12+19/20+29/30+41/42+55/56
= 1-1/2+1-1/6+1-1/12+1-1/20+1-1/30+1-1/42+1-1/56+1-1/72+1-1/90
= 9-(1/2+1/6+1/12+1/20+1/42+1/58+1/72+1/90)
=9-( 1/1.2 + 1/2.3 +1/3.4 +1/4.5 +1/5.6+ 1/6.7 +1/7.8 +1/8.9 +1/9.10)
=9-(1 -1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10)
=9-(1 -1/10)
=9-(9/10)= 81/10=8,1
`A=1/2+1/6+1/12+1/20+1/30+...+1/9900`
`=1/(1xx2)+1/(2xx3)+1/(3xx4)+1/(4xx5)+1/(5xx6)+...+1/(99xx100)`
`=1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+...+1/99-1/100`
`=1/1-1/100`
`=100/100-1/100`
`=99/100`
ta có:
A= 1/6+1/12+1/20+1/30+1/42+1/56
= 1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8
= 1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8
= 1/2-1/8
= 3/8
vậy A= 3/8
TA CÓ: