K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2021

vì: \(\dfrac{1}{4^2}< \dfrac{1}{4}\)

\(\dfrac{1}{6^2}< \dfrac{1}{4}\)

........

\(\dfrac{1}{2020^2}< \dfrac{1}{4}\)

=> \(\dfrac{1}{4^2}+\dfrac{1}{6^2}+.......+\dfrac{1}{2020^2}< \dfrac{1}{4}\)

4A=1-1/2^2+1/2^4-...+1/2^2018-1/2^2020

=>5A=1-1/2^2022

=>A=1/5-1/5*2^2022<1/5=0,2

\(A=\dfrac{1}{4}\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{1010^2}\right)\)

1/2^2+1/3^2+...+1/2010^2<1/1*2+1/2*3+...+1/2009*2010=1-1/2010<1

=>A<1/4

8 tháng 3 2017

Ta có:

\(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{2n^2}\)

\(=\frac{1}{2}\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{\left(2n-2\right).2n}\right)\)

\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{12}+...+\frac{1}{2n-2}-\frac{1}{2n}\right)\)

\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2n}\right)\)

\(=\frac{1}{4}-\frac{1}{2n.2}\)

\(\frac{1}{4}-\frac{1}{2n.2}< \frac{1}{4}\)

\(\Rightarrow\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{2n^2}< \frac{1}{4}\)

Vậy \(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{2n^2}< \frac{1}{4}\) (Đpcm)

10 tháng 11 2023

Ta có:

\(\dfrac{1}{2^2}=\dfrac{1}{2\cdot2}< \dfrac{1}{1\cdot2}\)

\(\dfrac{1}{3^2}=\dfrac{1}{3\cdot3}< \dfrac{1}{2\cdot3}\)

\(\dfrac{1}{4^2}=\dfrac{1}{4\cdot4}< \dfrac{1}{3\cdot4}\)

...

\(\dfrac{1}{9^2}=\dfrac{1}{9\cdot9}< \dfrac{1}{8\cdot9}\)

\(\dfrac{1}{10^2}=\dfrac{1}{10\cdot10}< \dfrac{1}{9\cdot10}\)

\(\Rightarrow A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{10^2}< \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{9\cdot10}\)

\(\Rightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\)

\(\Rightarrow A< 1-\dfrac{1}{10}\)

\(\Rightarrow A< \dfrac{9}{10}\)

\(\Rightarrow A< 1\) (vì: \(\dfrac{9}{10}< 1\))

10 tháng 11 2023

132=13⋅3<12⋅3

142=14⋅4<13⋅4

...

192=19⋅9<18⋅9

1102=110⋅10<19⋅10

⇒�=122+132+142+...+1102<11⋅2+12⋅3+13⋅4+...+19⋅10

⇒�<1−12+12−13+...+19−110

⇒�<1−110

⇒�<910

⇒�<1 (vì: 910<1)

 

\(S=\dfrac{1}{2^2}\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}\right)\)

=>\(S< =\dfrac{1}{4}\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\right)\)

=>\(S< =\dfrac{1}{4}\cdot\left(1-\dfrac{1}{n}\right)=\dfrac{1}{4}\cdot\dfrac{n-1}{n}< =\dfrac{1}{4}\)

21 tháng 8 2018

Ta thấy: k2 > (k - 1)(k + 1)

Do đó: \(\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}\)

\(< \dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{99.101}\)

\(=\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right).\dfrac{1}{2}\)

\(=\left(1-\dfrac{1}{101}\right).\dfrac{1}{2}\)

\(=\dfrac{100}{101}.\dfrac{1}{2}< 1.\dfrac{1}{2}=\dfrac{1}{2}\)

1: 

\(\dfrac{1}{2^2}< \dfrac{1}{1\cdot2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2\cdot3}\)

...

\(\dfrac{1}{8^2}< \dfrac{1}{7\cdot8}\)

=>\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{8^2}< \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+..+\dfrac{1}{7\cdot8}\)

=>\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{7}-\dfrac{1}{8}=\dfrac{7}{8}< 1\)

13 tháng 3 2022

\(\dfrac{1}{x+1}\)-\(\dfrac{5}{x-2}\)=\(\dfrac{15}{\left(x+1\right)\left(x-2\right)}\)

\(\Leftrightarrow\)\(\dfrac{x-2}{\left(x+1\right)\left(x-2\right)}\)-\(\dfrac{5\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}\)=\(\dfrac{15}{\left(x+1\right)\left(x-2\right)}\)

\(\Leftrightarrow\)x-2-5(x+1)=15

\(\Leftrightarrow\) x-2-5x-5=15

\(\Leftrightarrow\)x-5x=15+2+5

\(\Leftrightarrow\)-4x=22

\(\Leftrightarrow\)x=-\(\dfrac{11}{2}\)

vậy

13 tháng 3 2022

nhớ like nhahaha