cho tam giác abc vuông tại a có đường cao AH . gọi M và N lần lượt là trung điểm của AH và CH. cmr:
a) m là trung trực của tam giác ANB
b) BM vuông góc vs AN
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
7 tháng 7 2021
Xét ΔHAB có
M là trung điểm của AH(gt)
N là trung điểm của BH(gt)
Do đó: MN là đường trung bình của ΔHBA(Định nghĩa đường trung bình của tam giác)
Suy ra: MN//AB và \(MN=\dfrac{AB}{2}\)(Định lí 2 về đường trung bình của tam giác)
hay MN\(\perp\)AC(đpcm)
WM
14 tháng 8 2018
Hai tg vuông AHB~AHC => AH/BH=CH/AH=AC/AB
nhưng AH=2HM ; BH=2HN -gt- nên AV/BH=..=AC/AB=HM / HN
do đo ta có hai tg vuông CHM & AHN cũng ~ với nhau ( ~ là đồng dạng)
suy ra góc ^HAN=^HCM<=> CM và AN là hai cạnh tương ứng của hai góc =mà cặp cạnh kia CH đã vuông góc vơi AH
hoặc MN//AB ta cứ cộng các góc(=) dồn lại cũng ra ^NCM+^MNC+^MNA=!V
không sai đề đâu