Trong mỗi ô vuông của bảng ô vuông kích thước n\(\times\)n (n là số nguyên dương lẻ) ta viết một trong hai số 1 và -1, một cách tùy ý. Dưới mỗi cột ta viết tích tất cả các số trong cột đó, về phía bên phải của mỗi hàng ta viết tích tất cả các số của hàng đó. Chứng minh rằng tổng tất cả 2n tích vừa viết là một số khác 0.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
Gọi tích tất cả các số của mỗi hàng lần lượt là \(a_1,a_2,...,a_n\) và tương ứng số số bằng -1 ở mỗi hàng này lần lượt là \(m_1,m_2,...,m_n\). Khi đó \(a_i=\left(-1\right)^{m_i},\forall i\in\overline{1,n}\).
Tương tự gọi tích tất cả các số ở mỗi cột lần lượt là \(b_1,b_2,...,b_n\) và tương ứng số số bằng -1 ở mỗi cột này lần lượt là \(p_1,p_2,...,p_n\) thì \(b_i=\left(-1\right)^{p_i}.\forall i\in\overline{1,n}\).
Dễ thấy \(m_1+m_2+...+m_n=p_1+p_2+...+p_n\).
Giả sử tổng tất cả 2n tích đó bằng 0.
Khi đó \(\left(-1\right)^{m_1}+\left(-1\right)^{m_2}+...+\left(-1\right)^{m_n}+\left(-1\right)^{p_1}+\left(-1\right)^{p_2}+...+\left(-1\right)^{p_n}=0\).
Gọi x là số số chẵn trong các số \(m_1,m_2,...,m_n\) và y là số số chẵn trong số \(p_1,p_2,...,p_n\).
Ta có \(0=\left(-1\right)^{m_1}+\left(-1\right)^{m_2}+...+\left(-1\right)^{m_n}+\left(-1\right)^{p_1}+\left(-1\right)^{p_2}+...+\left(-1\right)^{p_n}=x-\left(n-x\right)+y-\left(n-y\right)=2\left(x+y\right)-2n\)
\(\Rightarrow x+y=n\).
Mà n lẻ nên x, y khác tính chẵn, lẻ.
Giả sử x chẵn, y lẻ. Khi đó \(m_1+m_2+...+m_n\) là số lẻ và \(p_1+p_2+...+p_n\) là số chẵn, vô lí.
Vậy...