Từ điểm A ở ngoài đường tròn tâm O bán kính R, kẻ 2 tiếp tuyến AB, AC
( B,C là 2 tiếp điểm ). Gọi H là giao điểm của OA và BC.
a) Chứng minh OA vuông góc BC, tính OH.OA theo R
b) Kẻ đường kính BD của đường tròn tâm O. Chứng minh CD // OA
c) Gọi E là hình chiếu của C trên BD, K là giao điểm của AD và CE. Chứng minh K là trung điểm của CE
a: Xét (O) có
AB là tiếp tuyến
AC là tiếp tuyến
Do đó: AB=AC
hay A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
nên O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
=>OA⊥BC
Xét ΔOBA vuông tại B có BH là đường cao
nên \(OH\cdot OA=OB^2=R^2\)
b:Xét (O) có
ΔBCD nội tiếp
BD là đường kính
Do đó: ΔBCD vuông tại C
Suy ra: BC⊥CD
mà BC⊥AO
nên AO//CD
Còn phần c thì sao ạ?