K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2016

1/1.2+1/3.4+1/5.6+...+1/49.50=1/26+1/27+...+1/50

=1/1-1/2+1/3-1/4+...+1/49-1/50

=(1/1+1/3+...+1/49)-(1/2+1/4+...+1/50)

=(1/1+1/2+1/3+...+1/49+1/50)-2(1/2+1/4+...+1/50)

=1/1+1/2+1/3+...+1/50-1-1/2-1/3-...-1/25

=1/26+1/27+...+1/50 (đpcm)

7 tháng 4 2016

1/1.2+1/3.4+1/5.6+...+1/49.50=1/26+1/27+...+1/50

=1/1-1/2+1/3-1/4+...+1/49-1/50

=(1/1+1/3+...+1/49)-(1/2+1/4+...+1/50)

=(1/1+1/2+1/3+...+1/49+1/50)-2(1/2+1/4+...+1/50)

=1/1+1/2+1/3+...+1/50-1-1/2-1/3-...-1/25

=1/26+1/27+...+1/50 (đpcm)

8 tháng 4 2016

what ....... what .......what 

8 tháng 4 2016

1/1.2+1/3.4+1/5.6+...+1/49.50=1/26+1/27+...+1/50

=1/1-1/2+1/3-1/4+...+1/49-1/50

=(1/1+1/3+...+1/49)-(1/2+1/4+...+1/50)

=(1/1+1/2+1/3+...+1/49+1/50)-2(1/2+1/4+...+1/50)

=1/1+1/2+1/3+...+1/50-1-1/2-1/3-...-1/25

=1/26+1/27+...+1/50 (đpcm)

ỦNg hộ nhà mih lại cho !!!

9 tháng 8 2016

\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

\(=\left(\frac{1}{1}-\frac{1}{2}\right)+...+\left(\frac{1}{49}-\frac{1}{50}\right)\)

\(=\frac{1}{1}-\frac{1}{50}\)

\(=\frac{49}{50}\)

15 tháng 4 2016

A=1/1.2+1/3.4+.....+1/49.50

 =1-1/2+1/3-1/4+...+1/49-1/50=(1+1/3+1/5+...+1/49) - (1/2+1/4+1/6+...+1/50)

 =(1+1/3+1/5+...+1/49)+(1/2+1/4+1/6+...+1/50)-2.(1/2+1/4+1/6+...+1/50)

 =(1+1/2+1/3+1/4+...+1/49+1/50) - (1+1/2+1/3+...1/25)

 =1/26+1/27+...1/50

Vậy .........

5 tháng 2 2020

Ta có : \(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=\left(1+\frac{1}{2}+...+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)\)

\(=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}\)

Khi đó : \(\left(\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}\right):\left(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{49.50}\right)\)

\(=\left(\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}\right):\left(\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}\right)=1\) (đpcm)

5 tháng 2 2020

Ta có : \(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)

\(\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+...+\frac{1}{25}\right)=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}\)

Khi đó \(\frac{\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}}{\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{49.50}}=\frac{\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}}{\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}}=1\left(\text{đpcm}\right)\)

7 tháng 12 2015

1/1.2 + 1/2.3 + ...... + 1/49.50

= 1/1 - 1/2 + 1/2  - - .... - 1/50 = 1 - 1/50 = 49/50

18 tháng 9 2021

\(\dfrac{1}{1\cdot2}+\dfrac{1}{3\cdot4}+\dfrac{1}{5\cdot6}+...+\dfrac{1}{49\cdot50}\\ =1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{49}-\dfrac{1}{50}\\ =\left(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{49}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+...+\dfrac{1}{50}\right)\\ =\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+...+\dfrac{1}{50}\right)\\ =\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{25}\right)\)

\(=\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{49}+\dfrac{1}{50}\)