Cho f(x)=(x-2)*(x-3)+1
Tìm giá trị nhỏ nhất của f(x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B
Từ đồ thị của hàm số f'(x) trên đoạn [0;4] ta có bảng biến thiên của hàm số trên đoạn [0;4] như sau:
Từ bảng biến thiên ta có
Mặt khác
Suy ra
Chọn A
Dựa vào đồ thị của hàm f'(x) ta có bảng biến thiên.
Vậy giá trị lớn nhất M = f(2)
Hàm số đồng biến trên khoảng (0;2) nên f(2) > f(1) => f(2) - f(1) > 0 .
Hàm số nghịch biến trên khoảng (2;4) nên f(2) > f(3) => f(2) - f(3) > 0.
Theo giả thuyết: f(0) + f(1) - 2f(2) = f(4) - f(3).
=> f(0) > f(4)
Vậy giá trị nhỏ nhất m = f(4)
Dựa vào bảng xét dấu của f '(x) ta có bảng biến thiên của hàm số trên đoạn [0;5] như sau
Suy ra Và
Ta có
Vì f(x) đồng biến trên đoạn [2;5] nên
⇒ f(5)>f(0)
Vậy
Chọn đáp án D.
Chọn B
Ta có:
biến thiên của hàm số f(x) trên đoạn [0;4]
Nhìn vào bảng biến thiên ta thấy
Ta có f(2) + f(4) = f(3) + f(0) ⇔ f(0) - f(4) = f(2) - f(3) > 0.
Suy ra: f(4) < f(0). Do đó
Vậy giá trị nhỏ nhất và lớn nhất của f(x) trên đoạn [0;4] lần lượt là: f(4), f(2).
v~ bố đây là toán lớp 7
f(x)=x^2-5x+6+1=(x-2.25)^2+0.75>=0.75