tim gia tri nho nhat cua bieu thuc x^3+y^3 voi x+y=3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left|x+y\right|+\left|x+3\right|+2014\ge0+0+2014=2014\) ; vì \(\left|x+3\right|\ge0\)\(;\left|x+y\right|\ge0\)
Min A =2014 khi x+3 =0 hay x =-3
và x+y =0 hay y =-x = -(-3) = 3
Vì |x-3| luôn lớn bằng 0 với mọi x
=> |x - 3| + (-100) luôn lớn bằng -100 với mọi x
=> A luôn lớn bằng 100
Dấu "=" xảy ra <=> |x-3| = 0
=> x - 3 = 0
=> x = 3
Vậy Min A = -100 <=> x = 3
Ta có |x - 3| > 0
=> |x - 3| + (-100) > - 100
hay A > 100
Vậy GTNN của A là 100 <=> |x - 3| = 0 <=> x - 3 = 0 <=> x = 3
Vì |y + 3| luôn lớn bằng 0 với mọi y
=> 100 - |y + 3| luôn bé bằng 0
=> B luôn bé bằng 0
Dấu "=" xảy ra <=> |y + 3| = 0
=> y + 3 = 0
=> y = -3
Vậy Max B = 100 tại y = -3
Ta có - |y - 3| < 0
=> B = 100 - |y - 3| < 100
GTLN của B là 100 <=> |y - 3| = 0 <=> y = 3
ta thấy: (x-1)^2 >hoặc =0
(y+3)^2 >hoặc = 0
suy ra (x-1)^2+ (y+3)^2 > hoac = 0
suy ra (x-1)^2+ (y+3)^2+ 5 > hoặc = 5
Để M đạt giá trị nhỏ nhất khi và chỉ khi M=5
Vậy M đạt giá trị nhỏ nhất =5
Ta có (x+1)^2\(\ge0với\forall x\) (y+3)^2\(\ge0\)với\(\forall y\)(bình phương không âm)
=>B=(x+1)^2+(y+3)^2+1\(\ge1\)
ta có (x+\(\frac{2}{3}\))\(^2\) ≥ 0 ∀ x
=> MinA= \(\frac{1}{2}\)↔\(\left(x+\frac{2}{3}\right)^2\)=0 ⇒x+\(\frac{2}{3}\)=0⇒ x=\(\frac{-2}{3}\)
giup minh voi nhanh len:)
x^3+y^3=(x+y)^3-3xy(x+y)
=27-9xy
Mà (x+y)^2 lớn hơn hoặc bằng 4xy
=>9 lớn hơn hoặc bằng 4xy (x+y=3)
=>81/4 lớn hơn hoặc bằng 9xy (nhân 2 vế với 9/4)
Dấu "=" xảy ra khi x=y= căn 9/4 = 3/2
Vậy GTNN của biểu thức trên là 27 - 81/4 = 27/4 khi x=y=3/2
MÌnh nghĩ như vậy ko biết đúng ko???