Cho a,b là các số tự nhiên thỏa mãn a+7 khác 7
Tìm Max của M=b/7-(a+b)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho a và b là các số tự nhiên thỏa mãn a^2+b^2 chia hết 7. chứng minh rằng a và b đều chia hết cho 7
Nhận thấy một số chính phương khi chia cho 7 có các số dư: 0,1,2,4. Xét các trường hợp:
+) Nếu một trong 2 số chia hết cho 7 thì hiển nhiên số còn lại cũng chia hết cho 7.
+) Nếu cả 2 số đều không chia hết cho 7, ta thấy trong 3 số 1,2,4 không có 2 số nào có tổng chia hết cho 7 => \(a^2+b^2\) không chia hết cho 7.
Vậy ta có đpcm.
Ta cóL
a+5b chia hết cho 7
=> 10(a+5b)=10a+50b chia hết cho 7
Mà 49b chia hết cho 7
=> 10a+50b-49b chia hết cho 7
=> 10a+b chia hết cho 7
A + B + C = 69 => A là một số có 2 chữ số < 69
B = tổng các chữ số của A nên B < 6+9 = 15
C = tổng các chữ số của B nên C < 1 + 5 = 6 (C luôn > 0) => C = 1; 2; 3;4; 5
Nếu C =1 => B = 1 (loại vì B,C khác nhau) hoặc B = 10.
B = 10 => A = 69 - 10 - 1 = 58 => tổng các chữ số của A khác B => loại
Nếu C = 2 => B = 11 => A = 69 - 11 -2 = 56 thoả mãn
nếu C = 3 => B = 12 => A = 69 - 12-3 = 54 loại
nếu C = 4 => B = 13 => A = 69 - 13 -4 = 52 loại
nếu C = 5 => B = 14 => A = 69 - 14 -5 = 50 loại
vậy A = 56
Ta có:
\(\frac{a}{b}=\frac{14}{22}=\frac{14k}{22k}=>a=14k,b=22k=>M=a+b=14k+22k=36k\)
\(\frac{c}{d}=\frac{11}{13}=\frac{11m}{13m}=>c=11m,d=13m=>M=c+d=11m+13m=24m\)
\(\frac{e}{f}=\frac{13}{17}=\frac{13n}{17n}=>e=13n,f=17n=>M=e+f=13n+17n=30n\)
=>M=36k=24m=30n
=>M chia hết cho 36,24,30
Ta thấy: ƯCLN(36,24,30)=360
=>M chia hết cho 360
=>M=360h
mà M là số bé nhất có 4 chữ số=>h bé nhất
=>999<360h
=>2<h
mà h bé nhất
=>h=3
=>M=3.360=1080
Vậy M=1080
$\frac{a}{b}=\frac{14}{22}=\frac{14k}{22k}=>a=14k,b=22k=>M=a+b=14k+22k=36k$