Cho a,b là các số tự nhiên thỏa mãn a+b khác 7
Tìm giá trị lớn nhất của M=b/7-(a-b)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(a+b=c+d=25\Rightarrow\frac{c}{b}=\frac{d}{a}\)(vì \(\frac{c}{b}+\frac{d}{b}=\frac{c+d}{b+a}=1\)
Vậy \(M=\frac{c}{b}+\frac{d}{a}\le2\)
Dấu "=" xảy ra khi \(a=b=c=d=\frac{25}{2}\)
Vì \(\frac{c}{b}+\frac{d}{b}=\frac{c+d}{b+a}=1\)
Nên \(a+b=c+d=25=>\frac{c}{b}=\frac{d}{b}\)
Vậy \(M=\frac{c}{b}+\frac{d}{a}\le2\)
Dấu "=" xảy ra khi \(a=b=c=d=\frac{25}{2}\)
Từ giả thiết ta dễ có \(a+b+c+d+e⋮60\Rightarrow4a,5c⋮60\Rightarrow a⋮15;c⋮12\)
\(\Rightarrow a\ge15;c\ge12\)
Ta có phép biến đổi sau:
\(3\left(a+b+c+d+e\right)=3a+4b+5c\)
\(\Rightarrow3\left(d+e\right)=b+2c\ge15+2\cdot19\Rightarrow d+e\ge13\)
Đẳng thức xảy ra tại b=15; c=12 => a=2;\(d\le13;e\le13\Rightarrow a=20\) là giá trị lớn nhất cần tìm