K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2016

bài này hình như trong đề thi hsg tỉnh thanh hóa 2013-2014 hoặc 2012-2013  lên mạng tra đáp án nha

22 tháng 8 2019

\(A=\frac{x}{1+y^2}+\frac{y}{1+z^2}+\frac{z}{1+x^2}=x\left(1-\frac{y^2}{1+y^2}\right)+y\left(1-\frac{z^2}{1+z^2}\right)+z\left(1-\frac{x^2}{1+x^2}\right)\)

\(\Rightarrow A\ge x\left(1-\frac{y}{2}\right)+y\left(1-\frac{z}{2}\right)+z\left(1-\frac{x}{2}\right)=\left(x+y+z\right)-\frac{xy+yz+zx}{2}\ge3-\frac{\frac{9}{3}}{2}=\frac{3}{2}\)

Dau '=' xay ra khi \(x=y=z=1\)

Vay \(A_{min}=\frac{3}{2}\)khi \(x=y=z=1\)

4 tháng 9 2019

Cauchy ngược dấu:v

\(A\ge x\left(1-\frac{y}{2}\right)+y\left(1-\frac{z}{2}\right)+z\left(1-\frac{x}{2}\right)\)

\(=x+y+z-\frac{xy+yz+zx}{2}\ge3-\frac{\left(x+y+z\right)^2}{6}=\frac{3}{2}\)

Đẳng thức xảy ra khi x = y = z = 1.

P/s: Ko chắc~

1 tháng 9 2019

\(P\ge\frac{x+y+z}{2}=\frac{\sqrt{\left(x+y+z\right)^2}}{2}\ge\frac{\sqrt{3\left(xy+yz+zx\right)}}{2}=\frac{\sqrt{3}}{2}\)

\("="\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\)

19 tháng 9 2019

a) \(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)=x^2\left(y^2+\frac{1}{x^2}\right)\)

\(+\frac{1}{y^2}\left(y^2+\frac{1}{x^2}\right)=x^2y^2+2+\frac{1}{x^2y^2}\)

\(=2+\left(x^2y^2+\frac{1}{256x^2y^2}\right)+\frac{255}{256x^2y^2}\)

Áp dụng BĐT Cauchy - Schwar cho 2 số không âm, ta được:

\(x^2y^2+\frac{1}{256x^2y^2}\ge2\sqrt{\frac{x^2y^2}{256x^2y^2}}=\frac{1}{8}\)

C/m được BĐT phụ: \(1=\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow16x^2y^2\le1\Leftrightarrow256x^2y^2\le16\Leftrightarrow\frac{255}{256x^2y^2}\ge\frac{255}{16}\)

\(\Rightarrow M\ge2+\frac{1}{8}+\frac{255}{16}=\frac{289}{16}\)

(Dấu "="\(\Leftrightarrow\hept{\begin{cases}x^2y^2=\frac{1}{256x^2y^2}\\x-y=0\end{cases}}\Leftrightarrow x=y=\frac{1}{2}\))

19 tháng 9 2019

\(\frac{16}{3x+3y+2z}=\frac{16}{\left(x+y\right)+\left(y+z\right)+\left(z+x\right)+\left(x+y\right)1}\le\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}+\frac{1}{x+y}\)

Tương tự \(\frac{16}{3x+2y+3z}\le\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}+\frac{1}{x+z}\)

\(\frac{16}{2x+3y+3z}\le\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}+\frac{1}{y+z}\)

Cộng vế theo vế ta có:

\(16\left(\frac{1}{3x+2y+3z}+\frac{1}{3x+3y+2z}+\frac{1}{2x+3y+3z}\right)\le4\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)=24\)

\(\Rightarrow\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\le\frac{3}{2}\left(đpcm\right)\)

P/S:Có dùng S-vác ngược dấu ạ.ý tưởng tách mẫu là từ tth_new - Trang của tth_new - Học toán với OnlineMath nha !

2 tháng 12 2016

Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy

1 tháng 12 2016

Các bạn ơi giúp mình với ạ, cảm ơn nhiều!

AH
Akai Haruma
Giáo viên
28 tháng 2 2020

Lời giải:

$P=\frac{1}{x^3+y^3}+\frac{1}{xy}=\frac{1}{(x+y)^3-3xy(x+y)}+\frac{1}{xy}=\frac{1}{1-3xy}+\frac{1}{xy}$

Áp dụng BĐT Cauchy-Schwarz:

\(P=\frac{1}{1-3xy}+\frac{1}{xy}=\frac{1}{1-3xy}+\frac{3}{3xy}\geq \frac{(1+\sqrt{3})^2}{1-3xy+3xy}=(1+\sqrt{3})^2\)

Vậy GTNN của $P$ là $(1+\sqrt{3})^2$

Mời các bạn Xem lời giải mình thử nhé, chả hiểu sao mình tìm được maxB mà không phải minB, nếu sai chỗ nào nhớ góp ý cho mình với nhé!!!. Cảm ơn...

Có: \(x^3+y^3=\left(x+y\right)\left(x^2+xy+y^2\right)\)), mà \(x+y=1\Leftrightarrow x^3+y^3=x^2+y^2+xy\)

mà \(\left(x+y\right)^2=1^2=1\Rightarrow x^2+xy+y^2=1-xy\)\(\Rightarrow\frac{1}{x^3+y^3}+\frac{1}{xy}=\frac{1}{1-xy}+\frac{1}{xy}=\frac{1}{xy-\left(xy\right)^2}\)

Lại có: \(x^2+y^2\ge2xy\Leftrightarrow x^2+y^2+xy\ge3xy\Leftrightarrow1-xy\ge3xy\)\(\Rightarrow xy\le\frac{1}{4}\)( AD bđt Cosy),  để tính maxB \(\Rightarrow xy-\left(xy\right)^2min\), mà \(max\left(xy\right)=\frac{1}{4}\)\(\Rightarrow maxB=\frac{1}{\frac{1}{4}-\left(\frac{1}{4}\right)^2}=\frac{16}{3}\)

2 tháng 8 2020

@Nguyễn Phước Nhật Tôn HĐT sai rồi bạn ơi @@