Cho A = ( 1 + 1/1.3 ) ( 1 + 1/2.4 ) ( 1 + 1/3.5 ) .... ( 1 + 1/2017/2019 )
Chứng minh A > 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này nếu dùng hằng đẳng thức lớp 8 thì hay hơn.Thôi cứ làm vầy nhé:
1+1/1.3=2^2/1.3 ; 1+1/2.4=3^2/2.4 ; 1+1/3.5=4^2/3.5 ; ......;1+1/2007.2009=2008^2/2007.2009 Thấy quy luật rồi chứ!
ta được A=(2^2.3^2.4^2.....2008^2)/1.3.2.4.3.5.4.6.5.7...2007.2009 Chú ý quan sát và sắp xếp
để giản ước hết.
=(2^2.3^2.4^2....2008^2)/(1.2.3.4.5.6....2007.3.4.5.6....2007.2008.2009) Chuẩn đó
=(2^2.3^2.4^2....2008^2)/(2.3^2.4^2.5^2....2007^2.2008.2009) Viết ra nháp thì dễ nhìn hơn
=2^2.2008^2/2.2008.2009=2.2008/2009 Tựbấm máy và nhớ TICK đó.
\(A=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{n\left(n+2\right)}\right)\)
\(=\frac{1.3+1}{1.3}.\frac{2.4+1}{2.4}.\frac{3.5+1}{3.5}....\frac{n\left(n+2\right)+1}{n\left(n+2\right)}\)
\(=\frac{\left(2-1\right)\left(2+1\right)+1}{1.3}.\frac{\left(3-1\right)\left(3+1\right)+1}{2.4}.\frac{\left(4-1\right)\left(4+1\right)+1}{3.5}....\frac{\left(n+1-1\right).\left(n+1+1\right)+1}{n.\left(n+2\right)}\)
\(=\frac{2^2-1^2+1}{1.3}.\frac{3^2-1^2+1}{2.4}.\frac{4^2-1^2+1}{3.5}....\frac{\left(n+1\right)^2-1^2+1}{n\left(n+2\right)}\)
\(=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...\frac{\left(n+1\right)^2}{n\left(n+2\right)}=\frac{2.2.3.3.4.4....\left(n+1\right)\left(n+1\right)}{1.3.2.4.3.5....n.\left(n+2\right)}=\frac{\left[2.3.4....\left(n+1\right)\right]\left[\left(2.3.4...\left(n+1\right)\right)\right]}{\left(1.2.3...n\right).\left[3.4.5...\left(n+2\right)\right]}\)
\(=\frac{\left(n+1\right).2}{n+2}< \frac{2.\left(n+2\right)}{n+2}=2\)
=> A < 2