K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: M(1)=3

M(-2)=2

=>a+b=3 và -2a+b=2

=>a=1/3 và b=8/3

b: G(-1)=F(2)

=>(a+1)*(-1)^2-3=5*2+7a

=>a+1-3-10-7a=0

=>-6a-12=0

=>a=-2

1:

\(f\left(x\right)=g\left(x\right)\cdot p\left(x\right)\)

=>\(p\left(x\right)=\dfrac{f\left(x\right)}{g\left(x\right)}\)

\(=\dfrac{x^5-3x^4+7x^3-9x^2+8x-2}{x^2-2x+a}\)

Để P(x) tồn tại với mọi x thì \(x^2-2x+a< >0\)(2) với mọi x

Giả sử \(x^2-2x+a=0\)(1)

\(\text{Δ}=\left(-2\right)^2-4\cdot1\cdot a=4-4a\)

Để phương trình (1)có nghiệm thì 4-4a>=0

=>a<=1

Do đó: Để bất phương trình (2) luôn đúng với mọi x thì a>1

Bài 3:

1:

AH=AO

=>H trùng với O

=>Tâm đường tròn ngoại tiếp ΔABC trùng với trực tâm của tam giác

=>ΔABC đều

=>\(\widehat{BAC}=60^0\)

 

12 tháng 8 2017

b. h(x) = (2x3 + 3x2 - 2x + 3) - (2x3 + 3x2 - 7x + 2)

= 2x3 + 3x2 - 2x + 3 - 2x3 - 3x2 + 7x - 2

= 5x + 1 (0.5 điểm)

g(x) = (2x3 + 3x2 - 2x + 3) + (2x3 + 3x2 - 7x + 2)

= 2x3 + 3x2 - 2x + 3 + 2x3 + 3x2 - 7x + 2

= 4x3 + 6x2 - 9x + 5 (0.5 điểm)

f(x)=0

=>x=1/2

g(1/2)=0

=>1-1/2a+1=0

=>2-1/2a=0

=>a=4

4 tháng 6 2018

h(x)=5x+1

nghiệm_của_đa_thức_h(x)_là_-1/5

1 tháng 5 2017

a)h(x)=f(x)-g(x)

        =(2x3 +3x2 -2x +3)-(2x3 +3x2 -7x +2)

        =2x3 + 3x2 - 2x +3 - 2x3 -3x2 + 7x -2

        =5x+1

b)h(x)=5x+1=0

=>5x=-1

    x=\(\frac{-1}{5}\)

1 tháng 7 2021

undefined

1 tháng 7 2021

a,f(x)+g(x)= (x2 + 3x - 5 ) +(x2 + 2x + 3)

                = x2 +3x-5 +x2 +2x+3

                = (x2+x2) +(3x+2x) +(-5+3)

                = 2x2 +5x -2

b, f(x)-g(x)=(x2 + 3x - 5 ) -(x2 + 2x + 3)

                 = x2 + 3x - 5  -x2 - 2x - 3

                 = (x2-x2) + (3x-2x) +(-5-3)

                  = X-8

HỌC TỐT :D