cho hình chóp SABCD có M thuộc SC.
a)tìm giao điểm của AM với mặt phẳng(AMN)
b)N thuộc BC.tìm giao điểm của SD và mặt phẳng (AMN)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi
O = AC ∩ BD
K = SO ∩ AN
L = BD ∩ AN
P = KL ∩ SD
Ta có P = SD ∩ (AMN).
Nhận xét: Trong cách giải trên, ta lấy (SBD) là mặt phẳng chứa SD, rồi tìm giao tuyến của (SBD) với (AMN). Từ đó tìm giao điểm của giao tuyến này và SD.
a) Tìm (SAD) ∩ (SBC)
Gọi E= AD ∩ BC. Ta có:
Do đó E ∈ (SAD) ∩ (SBC).
mà S ∈ (SAD) ∩ (SBC).
⇒ SE = (SAD) ∩ (SBC)
b) Tìm SD ∩ (AMN)
+ Tìm giao tuyến của (SAD) và (AMN) :
Trong mp (SBE), gọi F = MN ∩ SE :
F ∈ SE ⊂ (SAD) ⇒ F ∈ (SAD)
F ∈ MN ⊂ (AMN) ⇒ F ∈ (AMN)
⇒ F ∈ (SAD) ∩ (AMN)
⇒ AF = (SAD) ∩ (AMN).
+ Trong mp (SAD), gọi AF ∩ SD = P
⇒ P = SD ∩ (AMN).
c) Tìm thiết diện với mp(AMN):
(AMN) ∩ (SAB) = AM;
(AMN) ∩ (SBC) = MN;
(AMN) ∩ (SCD) = NP
(AMN) ∩ (SAD) = PA.
⇒ Thiết diện cần tìm là tứ giác AMNP.
Miền trong tam giác SC và gì nữa bạn? Tam giác phải có 3 đỉnh
a) (SAD) ∩ (SBC) = SE
b) Trong (SBE): MN ∩ SE = F
Trong (SAE): AF ∩ SD = P là điểm cần tìm
c) Thiết diện là tứ giác AMNP
a: Xét ΔSBD có
M,N lần lượt là trung điểm của SB,SD
=>MN là đường trung bình
=>MN//BD
BD//MN
\(MN\subset\left(AMN\right)\)
BD không thuộc mp(AMN)
Do đó: BD//(AMN)
b: Gọi O là giao điểm của AC và BD
\(O\in AC\subset\left(SAC\right)\)
\(O\in BD\subset\left(SBD\right)\)
Do đó: \(O\in\left(SAC\right)\cap\left(SBD\right)\)
mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)
nên \(\left(SAC\right)\cap\left(SBD\right)=SO\)
Chọn mp(SBD) có chứa MN
(SBD) giao (SAC)=SO(cmt)
Gọi K là giao điểm của SO với MN
=>K là giao điểm của MN với mp(SAC)
a) Ta có: AM cắt CD tại E nên E thuộc (AMN) và (SCD)
Mà N thuộc (AMN) và (SCD)
Do đó: EN là giao tuyến của hai mặt phẳng cần tìm.
b) Ta có: En cắt SC tại F nên F thuộc (AMN) và (SBC)
Mà M thuộc (AMN) và (SBC)
Do đó: FM là giao tuyến của hai mặt phẳng cần tìm.