Chứng minh rằng trong 5 STN bất kỳ bao giờ cũng có thể chọn ra 2 số mà hiệu của chúng chia hết cho 4.
Đây là nguyên lý đirichle nha các bn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
khi chia mot so tu nhien cho 5,so du co the la 1,2,3,4
suy ra:khi chia bat ki 6 so tu nhien cho 5,so du bang 1 trong 5 so tu 0 den 4
suy ra:co 2 trong 6 so do chia cho 5 co cung so du
suy ra;hieu cua chung chia het cho 5
Đề sai nha bạn. Vì là 6 số tự nhiên bất kỳ nên mình cho ví dụ này nhé: 1;3;5;7;9;11. Trong 6 số trên không có hiệu 2 số nào chia hết cho 5. Phải là 6 số tự nhiên liên tiếp mới được nha bạn.
Cái này sai nha bạn, liên tiếp thì được chứ bất kỳ thì không được. Ví dụ: cho 6 số đó là : 1 ; 3 ; 5 ; 7 ; 9 ; 11.
Không có cặp số nào có hiệu chia hết cho 5 nha bạn.
Theo Nguyên lí Đi-rich-lê thì trong 12 số tự nhiên bất kì bao giờ ta cũng chọn ra được 2 số mà hiệu của chúng chia hết cho 11 nên =>trong 12 số tự nhiên bất kì bao giờ ta cũng chọn ra được 2 số mà hiệu của chúng chia hết cho 11
Đem 12 số tự nhiên trên chia cho 11 thì nhận đc 12 số dư. Mà 1 số tự nhiên khi chia cho 11 sẽ nhận đc 1 trong 11 khả năng dư[0 đến 10].
Ta có 12:11=1[dư 1]
Theo nguyên lí điricle sẽ tồn tại ít nhất
1+1=2[ số dư bằng nhau]
Nghĩa là tồn tại ít nhất 2 số tự nhiên khi chia 11 có cùng số dư. Suy ra hiệu 2 số đó chia hết cho 11
Vậy bài toán đã được chứng minh
Gọi 3 số tự nhiên đó là a, b, c
Ta thấy có 3 số mà chỉ có loại đó là chẵn và lẻ
=> trong 3 số a, b, c phải có 2 số cùng tính chẵn lẻ
=> tổng của chúng chia hết cho 2
a, ta có 5 số tn liên tiếp là n;n+1;n+2;n+3;n+4 nếu n chia hết cho 5 => ĐPCM
nếu n chia cho 5 dư 1 => n +4 chia hết cho 5 => ĐPCM
nếu n chia cho 5 dư 2 => n +3 chia hết cho 5 => ĐPCM
nếu n chia cho 5 dư 3 => n + 2 chia hết cho 5 => ĐPCM
nếu n chia cho 5 dư 4 => n +1 chia hết cho 5 => ĐPCM
Vậy trong 5 số tự nhiên liên tiếp luôn có một số chia hết cho 5
Đem 12 stn cha cho 11 thì nhận đc 12 số dư .Mà 1 stn khi chia cho 11 se nhận đc trog 11 khả năng dư [ 0 đến 10 ]
ta có :
12/11=1 (dư 1)
Theo nguyên lí dircle sẽ tồn tại ít nhất 1+1=2 (số dư = nhau )
Nghĩa là sẽ có 2 stn khi chia cho 11 có cùng số dư
=> Hiệu 2 số đó chia hết cho 11
Chả bjt có đúng k .Nhưng mik nghĩ là 98%
trong 5 STN bất kỳ sẽ có ít nhất 1 cặp số có cùng số dư khi chia cho 4
=>hiệu của chúng chia hết cho 4