giúp tớ với
Tính tổng 1\1.3+1\3.5+...+1\9.10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bn lên ngạng hoặc và xem câu hỏi tương tự nha!
Nhớ k mk đấy nha!
thanks nhìu!
OK..OK..OK
\(C=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{\left(2n-1\right)\left(2n+1\right)}\)
\(2C=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{\left(2n-1\right)\left(2n+1\right)}\)
Ta có :
\(\frac{2}{1.3}=1-\frac{1}{3}\)
\(\frac{2}{3.5}=\frac{1}{3}-\frac{1}{5}\)
...............................
\(\frac{2}{\left(2n-1\right)\left(2n+1\right)}=\frac{1}{2n-1}-\frac{1}{2n+1}\)
\(\Rightarrow2C=1-\frac{1}{2n+1}=\frac{2n}{2n+1}\)
\(\Rightarrow C=\frac{n}{2n+1}\)
a) 5x - x = 64 \(\Rightarrow\) 4x = 64 \(\Rightarrow\) x = 16
b) \(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{9\cdot10}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}\)
\(=\frac{9}{10}\)
c) \(B=\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+...+\frac{2}{99\cdot101}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}\)
\(=\frac{100}{101}\)
d) \(C=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+...+\frac{1}{97\cdot99}\)
\(=\frac{1}{2}\cdot\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+...+\frac{2}{97\cdot99}\right)\)
\(=\frac{1}{2}\cdot\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+..+\frac{1}{97}-\frac{1}{99}\right)\)
\(=\frac{1}{2}\cdot\left(1-\frac{1}{99}\right)\)
\(=\frac{1}{2}\cdot\frac{98}{99}\)
\(=\frac{49}{99}\)
a) bạn xem lại đề nha
b)
\(B=\dfrac{1}{1.3}\)\(+\dfrac{1}{3.5}+...+\dfrac{1}{2003.2005}\)
\(B=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2003}-\dfrac{1}{2005}\right)\)
\(B=\dfrac{1}{2}\left(1-\dfrac{1}{2005}\right)=\dfrac{1002}{2005}\)
S=(1/1.3+1/3.5+.....+1/7.9)+(1/2.4+1/4.8+1/8.10)
2S=1/2.(1-1/3+1/5-1/5+....+1/7-1/9)+(1/2-1/4+1/4-1/8+1/8-1/10)
2S=1/2.(1-1/9)+(1/2-1/10)
2S=1/2.(8/9+2/5)
S =\(\frac{1}{2}\left(1-\frac{1}{3}\right)+\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}\right)+....\frac{1}{2}\left(\frac{1}{8}-\frac{1}{10}\right)\)
S = 1/2 ( 1 -1/3 +1/2-1/4+......+ 1/8-1/10)
S = 1/2(1+1/2-1/9-1/10)
S= 29/45
Bạn nói cô giáo sửa đề thành:
Tính tổng S=1/1.3+1/2.4+1/3.5+.....+1/\(7\).9+1/8.10
chứ không tổng S lẻ lắm, chẳng ai muốn tính cả.
\(\frac{1}{1\times3}+\frac{1}{3\times5}+\frac{1}{5\times7}+...+\frac{1}{2001\times2003}+\frac{1}{2003\times2005}=\frac{1}{2}\times\left(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+...+\frac{2}{2001\times2003}+\frac{2}{2003\times2005}\right)\)
\(=\frac{1}{2}\times\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2001}-\frac{1}{2003}+\frac{1}{2003}-\frac{1}{2005}\right)=\frac{1}{2}\times\left(1-\frac{1}{2005}\right)=\frac{1}{2}\times\frac{2004}{2005}=\frac{1002}{2005}\)
Chúc bạn học tốt
=1/2(1-1/3+1/3-1/5+1/5-1/7+1/7-1/9)+1/9.10
=1/2(1-1/9)+1/90
=1/2.8/9+1/90=4/9+1/90=41/90