Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để A nguyên thì \(x^2-4x-4⋮x-7\)
\(\Rightarrow x^2+3x-7x-21+17⋮x-7\)
\(\Rightarrow\left(x-7\right)\left(x+3\right)+17⋮x-7\)
Mà \(\left(x-7\right)\left(x+3\right)⋮x-7\)
\(\Rightarrow17⋮x-7\)
\(\Rightarrow x-7\in\left\{1;17;-1;-17\right\}\)
\(\Rightarrow x\in\left\{8;24;6;-10\right\}\)
\(\text{A=}\frac{x^2-4x-4}{x-7}\)
\(=\frac{x^2-4x-21+17}{x-7}\)
\(=\frac{x^2+3x-7x-21}{x-7}+\frac{17}{x-7}\)
\(=\frac{x\left(x+3\right)-7\left(x+3\right)}{x-7}+\frac{17}{x-7}\)
\(=\frac{\left(x-7\right)\left(x+3\right)}{x-7}+\frac{17}{x-7}\)
\(=\left(x+3\right)+\frac{17}{x-7}\)
Vì \(3\in Z\)
\(\Leftrightarrow x+3\in Z\)
\(\Rightarrow\text{A}\in Z\text{ khi }\frac{17}{x-7}\in Z\)
\(\Leftrightarrow\left(x-7\right)\inƯ\left(17\right)=\left\{1;-1;17;-17\right\}\)
\(\Leftrightarrow x=\left\{8;6;24;-10\right\}\)
Vậy với \(x=\left\{-10;6;8;24\right\}\)thì A có giá trị nguyên
\(A=\dfrac{x+1}{x-2}=\dfrac{x-2+3}{x-2}=1+\dfrac{3}{x-2}\)
A là số nguyên khi: \(\dfrac{3}{x-2}\) nguyên
3 ⋮ x - 2
\(\Rightarrow x-2\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
\(\Rightarrow x\in\left\{3;1;5;-1\right\}\)
a, để A = \(\dfrac{2}{x+5}\) ϵ Z thì 2 ⋮ x + 5
x + 5 ϵ Ư(2) = { -2; -1; 1; 2)
x ϵ { -7; -6; -4; -3}
b, để B = \(\dfrac{2x-3}{x+1}\) ϵ Z thì 2x - 3 ⋮ x + 1 ⇔ 2(x+1) - 5 ⋮ x + 1
x + 1 ϵ Ư(5) ={ -5; -1; 1; 5)
x ϵ { -6; -2; 0; 4}
ĐKXĐ : \(x\ne2\)
Ta có HĐT sau (a - b)(a + b) = a2 - ab + ab - b2 = a2 - b2
Áp dụng vào bài toán ta có:
x4 + 3 = (x4 - 16) + 19
= [(x2)2 - 42] + 19
= (x2 - 4)(x2 + 4) + 19
= (x - 2)(x + 2)(x2 + 4) + 19
Từ đó \(A=\dfrac{x^2+3}{x-2}=\dfrac{\left(x-2\right).\left(x+2\right).\left(x^2+4\right)+19}{x-2}\)
\(=\left(x+2\right).\left(x^2+4\right)+\dfrac{19}{x-2}\)
Do \(x\inℤ\) nên \(A\inℤ\Leftrightarrow19⋮x-2\)
\(\Leftrightarrow x-2\inƯ\left(19\right)=\left\{1;-1;19;-19\right\}\)
hay \(x\in\left\{3;1;21;-17\right\}\)
Ta có: \(A=\dfrac{x+1}{x-2}=\dfrac{x-2+3}{x-2}=\dfrac{x-2}{x-2}+\dfrac{3}{x-2}=1+\dfrac{3}{x-2}\)
Để A là số nguyên thì \(x-2\inƯ\left(3\right)=\left\{-1,-3,1,3\right\}\)
Ta có bảng giá trị:
x - 2 | -1 | -3 | 1 | 3 |
x | 1 (tm) | -1 (tm) | 3 (tm) | 5 (tm) |
Vậy ...
Ta có : \(A=\dfrac{x+1}{x-2}=\dfrac{x-2+3}{x-2}\)
\(\Rightarrow A=1+\dfrac{3}{x-2}\)
Vì x là số nguyên nên để A cũng là số nguyên thì : \(\dfrac{3}{x-2}\in Z\)
\(\Rightarrow3⋮\left(x-2\right)\)
\(\Rightarrow\left(x-2\right)\inƯ\left(3\right)\)
Do đó ta có bảng :
x-2 | 1 | 3 | -1 | -3 |
x | 3 | 5 | 1 | -1 |
Vậy..........
A nguyên
=>10x-15+6 chia hết cho 2x-3
=>\(2x-3\in\left\{1;-1;3;-3\right\}\)
=>\(x\in\left\{2;1;3;0\right\}\)
Bài 1
a) Để x-3/x+3 là một số nguyên thì x+3 khác 0 và x-3 ko chia hết cho x+3
=>x+3-6 ko chia hết cho x+3
=>6 ko chia hết cho x-3
=>x-3 ko thuộc Ư(6)={1;2;3;6;-1;-2;-3;-6}
=> x-3 khác {1;2;3;6;-1;-2;-3;-6}
=>x khác {4;5;6;9;2;1;0;-3}
b) Để A là một số nguyên thì x-3 chia hết cho x+3
=>x+3-6 chia hết cho x-3
=>6 chia hết cho x-3
=>x-3 thuộc Ư(6)={1;2;3;6;-1;-2;-3;-6}
Đến đây bn tự lm phần còn lại nha
Bài 2:
Câu a lm giống như câu b bài 1 nha bn
b) Bn tham khảo nha
https://hoidap247.com/cau-hoi/346697
Tìm cái bài thứ hai ý nhưng nhìn hơi khó
Answer:
\(A=\frac{4x+21}{x+5}\) (ĐKXĐ: \(x\ne-5\))
\(=\frac{4x+20+1}{x+5}\)
\(=\frac{4\left(x+5\right)+1}{x+5}\)
\(=4+\frac{1}{x+5}\)
Để A là số nguyên thì 1 chia hết cho x + 5
\(\Rightarrow x+5\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Rightarrow x\in\left\{-4;-6\right\}\)