K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2022

Giúp tui vs mn

 

NV
29 tháng 1 2024

Bài toán thỏa mãn khi:

\(\left\{{}\begin{matrix}x_1+x_2=2\left(1-m\right)>0\\x_1x_2=-2m-5< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 1\\m>-\dfrac{5}{2}\end{matrix}\right.\)

\(\Rightarrow-\dfrac{5}{2}< m< 1\)

10 tháng 3 2021

\(\Delta=\left(m+1\right)^2-4m=m^2+2m+1-4m=m^2-2m+1=\left(m-1\right)^2\\\)

\(\Delta\ge0\Leftrightarrow\left(m-1\right)^2\ge0\forall m\)

Theo hệ thức Vi - ét ta có \(\left\{{}\begin{matrix}x_1+x_2=m+1\\x_1x_2=m\end{matrix}\right.\)

để phương trình có hai nghiệm trái dấu \(\left\{{}\begin{matrix}\Delta\ge0\\x_1x_2< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\forall m\\m< 0\end{matrix}\right.\)

 

4 tháng 6 2017

Phương trình có hai nghiệm phân biệt khi : \(\Delta^'>0\)

\(\Rightarrow\Delta^'=4-\left(m+1\right)=3-m>0\Leftrightarrow m< 3\)

Ta có theo viet : \(x_1x_2=m+1\)để phương trình có hai nghiệm trái dấu thì : \(x_1x_2=m+1< 0\Leftrightarrow m< -1\)kết hợp điều kiện có : \(m< -1\)

mà :\(x_1=4-\sqrt{3-m};x_2=4+\sqrt{3-m}\)do \(\sqrt{3-m}\ge\forall m< 3\)nên về độ lớn trị tuyệt đối  \(x_2>x_1\)

4 tháng 6 2017

Ta có:

\(x^2-4x+m+1=0\)

Để phương trình có 2 nghiệm thì

     \(\Delta=16-4\left(m+1\right)>0\)

<=> \(m< 3\)

=> \(x_1=\frac{4+\sqrt{12-4m}}{2},x_2=\frac{4-\sqrt{12-4m}}{2}\)

Dễ dàng nhận thấy \(x_1>0\)

=> \(x_2< 0\)

=> \(4< \sqrt{12-4m}\)

=> \(16< 12-4m\)

=> \(4m< -4\)

=> \(m< -1\)

( thỏa mã điều kiện m<3)

a: Thay x=5 vào pt, ta được:

25-5m-m-1=0

=>24-6m=0

hay m=4

b: \(\text{Δ}=\left(-m\right)^2-4\left(-m-1\right)\)

\(=m^2+4m+4=\left(m+2\right)^2\)

Để phương trình có hai nghiệm phân biệt thì m+2<>0

hay m<>-2

d: Để phương trình có hai nghiệm cùng dấu thì \(\left\{{}\begin{matrix}m>0\\-m-1>0\end{matrix}\right.\Leftrightarrow m\in\varnothing\)

NV
23 tháng 2 2021

Pt có 2 nghiệm trái dấu khi: \(1.\left(m+4\right)< 0\Leftrightarrow m< -4\)

Đồng thời nghiệm âm có giá trị tuyệt đối nhỏ hơn nghiệm dương \(\Leftrightarrow x_1+x_2>0\)

\(\Leftrightarrow m+1>0\Rightarrow m>-1\)

\(\Rightarrow\left\{{}\begin{matrix}m< -4\\m>-1\end{matrix}\right.\) (vô lý)

Vậy không tồn tại m thỏa mãn yêu cầu đề bài

4 tháng 4 2019

\(||x+1|-1|=0\)

\(\Rightarrow|x+1|-1=0\)

    \(|x+1|=0+1=1\)

\(\Rightarrow x+1=1\)hoặc  \(x+1=-1\)

\(x=1-1=0\)                \(x=\left(-1\right)-1\)

                                                  \(x=-2\)

\(\Rightarrow x\in\left\{0;-2\right\}\)

4 tháng 4 2019

Ta có || x+1| -1| luôn lớn hơn hoặc bằng 0
Suy ra | x+1| -1= 0
           | x+1|    = 1
Suy ra: x+1=1 hoặc x+1= -1
                 x =0 hoặc x = -2

16 tháng 11 2017

dùng viet