Tam giác ABC có các cạnh lần lượt tỉ lệ với 3; 4; 5 và chu vi của nó là 96cm. Tìm
độ dài mỗi cạnh của tam giác đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo tỉ lệ ta có: \(\begin{cases}\frac{a}{b}=\frac{3}{4}\\\frac{a}{c}=\frac{3}{5}\\a+b+c=24\end{cases}\) \(\Leftrightarrow\begin{cases}b=\frac{4}{3}a\\c=\frac{5}{3}a\\a+b+c=24\end{cases}\) \(\Leftrightarrow\begin{cases}b=\frac{4}{3}a\\c=\frac{5}{3}a\\a+\frac{4}{3}a+\frac{5}{3}a=24\end{cases}\) \(\Leftrightarrow\begin{cases}b=8\\c=10\\a=6\end{cases}\)
b. Tam giác ABC là tam giác vuông . vì : \(8^2+6^2=10^2\)( đúng với pytago)
a) Theo bài ra ta có:
a/b=3/4 ; b/c=4/5 ; a/c=3/5
=> a/3 = b/4 =c/5 và a+b+c=24
Áp dụng tchat dayc tỉ số bằng nhau ta có
a/3=b/4=c/5 =a+b+c/3+4+5=24/12=2
Vì a/3=2 =>a=6
Vì b/4 =2 => b=8
Vì c/5 =2 => c=10
Vậy...........
.
gọi các cạnh cảu tam giác là x,y,z (x,y,z∈N*)
vì 3 cạnh tam giác tỉ lệ với 3:4:5 nên:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\) và x+y+z=180
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{x+y+z}{3+4+5}=\dfrac{180}{12}=15\)
suy ra: \(\dfrac{x}{3}=15\Rightarrow x=45\\ \dfrac{y}{4}=15\Rightarrow y=60\\ \dfrac{z}{5}=15\Rightarrow z=75\)
Gọi a, b, c lần lượt là số đo của các cạnh tam giác ( a, b, c >0)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{3+4+5}=\dfrac{180}{12}=15\)
Do đó: \(\dfrac{a}{3}=15=>a=15.3=45\)
\(\dfrac{b}{4}=15=>b=15.4=60\)
\(\dfrac{c}{5}=15=>c=15.5=75\)
Vậy số đo các cạnh tam giác lần lượt là 45, 60, 75 cm
CHÚC BẠN HỌC TỐT!
Gọi a,b,c lần lượt là độ dài các cạnh của tam giác
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{36}{12}=3\)
\(\Rightarrow\) a = 9; b = 12; c = 15
mà a2 + b2 = 92 + 122 = 152 = c2
nên tam giác ABC vuông
Diện tích tam giác ABC là 9.12 : 2 = 54 (cm2)
Gọi các cạnh của tam giác lần lượt là `x,y,z (x,y,z \ne 0)`
Các cạnh của tam giác lần lượt tỉ lệ với `2:4:5`
Nghĩa là: `x/2=y/4=z/5`
Chu vi các cạnh của tam giác là `44 cm`
`-> x+y+z=44`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`x/2=y/4=z/5=(x+y+z)/(2+4+5)=44/11=4`
`=>`\(\left\{{}\begin{matrix}\dfrac{x}{2}=4\\\dfrac{y}{4}=4\\\dfrac{z}{5}=4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=4\cdot2=8\\y=4\cdot4=16\\z=4\cdot5=20\end{matrix}\right.\)
Vậy, các cạnh của tam giác lần lượt là `8 cm, 16 cm, 20 cm.`
Gọi 3 cạnh là a; b;c
=> a +b + c = 34
Ta có 3 cạnh tỉ lệ với 3;4;5 nên \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)
Theo tc tỉ lệ thức => \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{34}{12}\)
=> a = \(\frac{34}{12}.3=8,5\) cm
b = \(\frac{34}{12}.4=\frac{34}{3}\) cm
c = \(\frac{34}{12}.5=\frac{85}{6}\) cm
ĐS:...
-tổng 3 góc của 1 tam giác=180
-gọi ^A,^B,^C lần lượt là x,y,z
-áp dụng tính chất dãy tỉ số bằng nhau:
x/1=y/2=z/3=x+y+z/1+2+3=180/6=30
suy ra:x/1=30 suy ra x=30
suy ra:y/2=30 suy ra y=60
suy ra:z/3=30 suy ra z=90
suy ra ^A=30o;^B=60o;^C=90o
Theo bài toán ta có:
\(\dfrac{A}{1}\)\(=\)\(\dfrac{B}{2}\)\(=\)\(\dfrac{C}{3}\) và A\(+\)B\(+\)C\(=\)180°(vì tổng ba góc của một tam giác bằng 180°)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{A}{1}\)\(+\)\(\dfrac{B}{2}\)\(+\)\(\dfrac{C}{2}\)\(=\dfrac{A+B+C}{1+2+3}\)\(=\)\(\dfrac{180}{6}\)\(=\)30°
\(\Rightarrow\)\(\dfrac{A}{1}\)\(=\)30°. 1\(=\) 30°
\(\dfrac{B}{2}\)\(=\) 30°. 2\(=\) 60°
\(\dfrac{C}{3}\)\(=\)30°. 3\(=\)90°
Vậy số đo của ba góc A, B, C lần lượt là 30°, 60° và 90°
Gọi x, y, z lần lượt là độ dài các cạnh của tam giác đó.
Theo đề ta có:
x/3 = y/4 = z/5 và x + y + z = 96
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/3 = y/4 = z/5 = x + y + z / 3 + 4 + 5 = 96/12 = 8
x/3 = 8 => x = 24
y/4 = 8 => y = 32
z/5 = 8 => z = 40
Vậy độ dài các cạnh của tam giác đó lần lượt là: 24, 32, 40 (cm)