chứng tỏ 2 số 4n+1 và 8n+4 là hai số nguyên tố cùng nhau với mọi số tự nhiên n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(d=\left(5n+4,4n+3\right)\).
Suy ra
\(\hept{\begin{cases}5n+4⋮d\\4n+3⋮d\end{cases}}\Rightarrow4\left(5n+4\right)-4\left(4n+3\right)=1⋮d\Rightarrow d=1\).
Do đó ta có đpcm.
giúp minh câu này với CMR 3n-1 và 6n-3 là nguyên tố cùng nhau (mọi n đều thuộc số nguyên tố khác 0)
Gọi ƯCLN của 6n+4 và 8n+5 là d ( d thuộc N sao )
=> 6n+4 và 8n+5 đều chia hết cho d
=> 4.(6n+4) và 3.(8n+5) đều chia hết cho d
=> 24n+16 và 24n+15 chia hết cho d
=> 24n+16-(24n+15) chia hết cho d hay 1 chia hết cho d
=> d = 1 ( vì d thuộc N sao )
=> ƯCLN của 6n+4 và 8n+5 là 1
=> 6n+4 và 8n+5 là 2 số nguyên tố cùng nhau
=> ĐPCM
k mk nha
Phai chung minh 6n+4va8n+5 co uoc chung la. 1
(6n+4;8n+5)=(6n+4;2n+1)=(4n+3;2n+1)=(2n+2;2n+1)=1
Vay 6n+4 va 8n+5 la hai so nguyen to cung nhau
1. Đặt \(ƯCLN\left(5n+3,6n+1\right)=d\) với \(d\ne1\)
\(\Rightarrow\left\{{}\begin{matrix}5n+3⋮d\\6n+1⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}30n+18⋮d\\30n+5⋮d\end{matrix}\right.\)
\(\Rightarrow13⋮d\)
\(\Rightarrow d\in\left\{1,13\right\}\)
Nhưng vì \(d\ne1\) nên \(d=13\). Vậy \(ƯCLN\left(5n+3,6n+1\right)=13\)
2. Gọi \(ƯCLN\left(4n+3,5n+4\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}4n+3⋮d\\5n+4⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}20n+15⋮d\\20n+16⋮d\end{matrix}\right.\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(ƯCLN\left(4n+3,5n+4\right)=1\) nên 2 số này nguyên tố cùng nhau. (đpcm)
3: Tương tự 2 nhưng khi đó \(d\in\left\{1,2\right\}\). Nhưng vì cả 2 số \(2n+1,6n+5\) đều là số lẻ nên chúng không thể có ƯC là 2. Vậy \(d=1\)
4. Tương tự 3.
Bạn nên tách riêng rẽ từng bài ra để đăng cho mọi người quan sát dễ hơn nhé.
tink nhé
gọi ƯCLN(4n+3;6n+5)=k
=>4n+3 chia hết cho k | =>3(4n+3) chia hết cho k
6n+5 chia hết cho k | =>2(6n+5) chia hết cho k
=>12n+9 chia hết cho k
=>12n+10 chia hết cho k
=>(12n+10)-(12n+9) chia hết cho k
=>1chia hết cho k =>k=1
=>đpcm
chúc bạn học tốt
4n + 3 và số 6n + 5 là hai số nguyên tố cùng nhau?
goi UCLN(4n+3,6n+5)=d
=>4n+3 chia hết cho d=>24n+18 chia hết cho d
=>6n+5 chia hết cho d=>24n+20 chia hết cho d
=>(24n+20)-(24n+18) chia hết cho d
=>2 chia hết cho d
mà 2 chia hết cho 1;2
=>d=1;2
.....
đang ban bn làm tiếp nhé
a) Gọi ƯCLN (n + 3; n + 2) = d.
Ta thấy (n + 3) chia hết cho d; (n+2) chia hết cho d=>[(n + 3)- (n + 2)] chia hết cho d =>l chia hết cho d
Nên d = 1. Do đó n + 3 và n + 2 là hai số nguyên tố cùng nhau.
b) Gọi ƯCLN (3n+4; 3n + 7) = đ.
Ta thấy (3n + 4) chia hết cho d;(3n+7) chia hết cho d =>[(3n+7) - (3n + 4)] chia hết cho d =>3 chia hết cho d nên
d = 1 hoặc d = 3.
Mà (3n + 4) không chia hết cho 3; (3n + 7) không chia hết cho 3 nên d = 1. Ta có điều phải chứng minh.
c) Gọi ƯCLN (2n + 3; 4n + 8) = d.
Ta thấy (2n + 3) chia hết cho d ; (4n + 8) chia hết cho d => [(4n + 8) - 2.(2n +3)] chia hết cho d => 2 chia hết cho d
nên d = 1 hoặc d = 2.
Mà (2n+3) không chia hết cho 2 nên d = 1. Ta có điều phải chứng minh.
4n+1 chia hết N
8n+4 chia hết N
<=> 4n+1 chia hết N => 8n+2 chia hết N
8n+2 chia hết N}
} 2chia hết cho N
8n+4 chia hết N}
Mà 2 là số nguyên tố nên 4n+1 và 8n+4 là hai số nguyên tố với mọi số tự nhiên N