Cho tam giác ABC vuông tại A, biết AB=12cm,BC=20cm. Hãy tính diện tích tam giác ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì △ ABD và △ ABC có chung đường cao kẻ từ đỉnh A nên:
Vậy: S A B D = 3/8.S
S A D C = S A B C - S A B D = S - 3/8.S = 8/8.S - 3/8.S = 5/8.S
Vì DE // AB và AD là đường phân giác góc A nên AE = DE
Ta có:
Vậy:
Ta có:
A B C 16 12 H
1) Có \(\Delta ABC\) vuông
=> S\(\Delta ABC\) = \(\dfrac{AB.AC}{2}\) = \(\dfrac{16.12}{2}\) = 96 (cm2)
2) Có \(\Delta ABC\) vuông , theo định lý Pytago ta có :
AB2 + AC2 = BC2
=> 162 + 122 = BC2
=> 400 = BC2
=> BC = 20 (cm)
Ta có : S\(\Delta ABC\) = S\(\Delta ABH\) + S\(\Delta ACH\)
=> \(\dfrac{BH.AH}{2}+\dfrac{HC.AH}{2}=S\Delta ABC\)
=> \(\dfrac{BH.AH+HC.AH}{2}=S\Delta ABC\)
=> \(\dfrac{AH.\left(BH+HC\right)}{2}=S\Delta ABC\)
=> \(\dfrac{AH.BC}{2}\) = 96
=> AH = 96 . \(\dfrac{2}{BC}\) = 96 . \(\dfrac{2}{20}\) = 9.6 (cm)
3) Có \(\Delta ABH\) vuông , theo định lý Pytago ta có :
BH2 = AB2 - AH2
=>BH2 = 162 - 9.62 = 163.84
=> BH = 12.8 (cm)
=> CH = BC - BH = 20 - 12.8 = 7.2 (cm)
Tam giác ABC vuông tại A áp dụng đính lý cạnh góc vuông và hình chiếu ta có::
\(AB^2=BC\cdot HB=BC\cdot\left(BC-HC\right)\)
\(\Rightarrow20^2=BC^2-BC\cdot9\)
\(\Rightarrow BC^2-9BC-400=0\)
\(\Rightarrow BC^2+16BC-25BC-400=0\)
\(\Rightarrow BC\left(BC+16\right)-25\left(BC+16\right)=0\)
\(\Rightarrow\left(BC+16\right)\left(BC-25\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}BC+16=0\\BC-25=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}BC=-16\left(ktm\right)\\BC=25\left(tm\right)\end{matrix}\right.\)
Áp dụng hệ thức đường cao và hình chiếu ta có:
\(AH^2=HC\cdot HB\Rightarrow AH=\sqrt{HC\cdot\left(BC-HC\right)}\)
\(\Rightarrow AH=\sqrt{9\cdot\left(25-9\right)}=12\left(cm\right)\)
Diện tích của tam giác ABC là:
\(S_{ABC}=\dfrac{1}{2}\cdot BC\cdot AH=\dfrac{1}{2}\cdot25\cdot12=150\left(cm^2\right)\)
Tam giác ABC vuông tại A. => AB^2+AC^2=BC^2
12^2+AC^2=20^2
AC^2=400-144
AC^2=256
AC=\(\sqrt{256}=16cm\)
Áp dụng Pytato vào tam giác ta được :
AB^2 +AC^2 = BC^2
=> 12^2 +AC^2=20^2
=> AC^2=20^2-12^2=256
=> AC=16 (cm)
Áp dụng định lý Py-ta-go vào tam giác vuông ABC ta có:
\(BC^2=AB^2+AC^2\)
\(\Rightarrow AC=\sqrt{BC^2-AB^2}\)
\(\Rightarrow AC=\sqrt{20^2-12^2}=16\left(cm\right)\)
Mà: \(sinB=\dfrac{AC}{BC}=\dfrac{16}{20}\)
\(\Rightarrow sinB=\dfrac{4}{5}\Rightarrow\widehat{B}\approx53^o\)
\(\Rightarrow\widehat{C}=180^o-90^o-53^o\approx37^o\)
Áp dụng định lí PTG: \(AC=\sqrt{BC^2-AB^2}=16\left(cm\right)\)
Vậy \(S_{ABC}=\dfrac{1}{2}AB\cdot AC=\dfrac{1}{2}\cdot12\cdot16=96\left(cm^2\right)\)