Tìm giá trị nhỏ nhất của:
B= /3x-2/+/3x-4/+/3x-6/
dấu "/" biểu thị cho giá trị tuyệt đối
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ủa mấy cái này tưởng mấy em được học rồi nhỉ?
a, \(|3x-4|+|4y+1|=0\)
\(\Rightarrow\hept{\begin{cases}|3x-4|=0\\|4y+1|=0\end{cases}\Leftrightarrow\hept{\begin{cases}3x-4=0\\4y+1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{4}{3}\\y=-\frac{1}{4}\end{cases}}}\)
b, Lập bảng xét dấu giá trị tuyệt đối
\(x\) \(-\frac{5}{2}\) \(\frac{1}{3}\)
\(2x+5\) \(-5-2x\) \(0\) \(2x+5\) \(||\) \(2x+5\)
\(3x-1\) \(1-3x\) \(||\)\(1-3x\) \(0\)\(3x-1\)
\(VT\) \(||\) \(||\)
TH1: \(x< -\frac{5}{2}\)\(\Rightarrow\hept{\begin{cases}|2x+5|=-5-2x\\|3x-1|=1-3x\end{cases}}\)
\(\Rightarrow-5-2x+1-3x=3\)\(\Leftrightarrow-4-5x=3\Leftrightarrow x=-\frac{7}{5}\left(L\right)\)
TH2: \(-\frac{5}{2}\le x\le\frac{1}{3}\)\(\Rightarrow\hept{\begin{cases}|2x+5|=2x+5\\|3x-1|=1-3x\end{cases}}\)
\(\Rightarrow2x+5+1-3x=3\)\(\Leftrightarrow6-x=3\Leftrightarrow x=3\left(L\right)\)
TH3: \(x>\frac{1}{3}\)\(\Rightarrow\hept{\begin{cases}2x+5|=2x+5\\|3x-1|=3x-1\end{cases}}\)
\(\Rightarrow2x+5+3x-1=3\)\(\Leftrightarrow5x+4=3\Leftrightarrow5x=-1\Leftrightarrow x=-\frac{1}{5}\left(L\right)\)
Vậy PT đã cho vô nghiệm.
P/S: Không hiểu ở đâu thì nhắn chị nhé.
giải hộ mk bằng bảng xét dấu cái dấu / này là giá trị tuyệt đối nhé /3x+2/+/2x-3/=4 /6-3x/+/2x+2/=14
Bạn có thể gõ dấu gttd bằng cách giữ phím Shift và nhấn phím bên trái phím xoá đó
a) Ta có:
\(\left|3x-1\right|\ge0\forall x\)
=> GTNN của biểu thức đã cho là 0, đạt được khi:
3x -1 = 0
3x = 1
x = -1/3
b) Ta có:
\(4\left|3+2x\right|\ge0\forall x\)
=> \(4\left|3+2x\right|+1\ge1\forall x\)
=> GTNN của biểu thức đã cho là 1, đạt được khi:
4|3+2x|=0
|3+2x|=0
3+2x = 0
2x = -3
x = -3/2
a: Để \(\dfrac{3x-2}{4}\) không nhỏ hơn \(\dfrac{3x+3}{6}\) thì \(\dfrac{3x-2}{4}>=\dfrac{3x+3}{6}\)
=>\(\dfrac{6\left(3x-2\right)}{24}>=\dfrac{4\left(3x+3\right)}{24}\)
=>18x-12>=12x+12
=>6x>=24
=>x>=4
b: Để \(\left(x+1\right)^2\) nhỏ hơn \(\left(x-1\right)^2\) thì \(\left(x+1\right)^2< \left(x-1\right)^2\)
=>\(x^2+2x+1< x^2-2x+1\)
=>4x<0
=>x<0
c: Để \(\dfrac{2x-3}{35}+\dfrac{x\left(x-2\right)}{7}\) không lớn hơn \(\dfrac{x^2}{7}-\dfrac{2x-3}{5}\) thì
\(\dfrac{2x-3}{35}+\dfrac{x\left(x-2\right)}{7}< =\dfrac{x^2}{7}-\dfrac{2x-3}{5}\)
=>\(\dfrac{2x-3+5x\left(x-2\right)}{35}< =\dfrac{5x^2-7\cdot\left(2x-3\right)}{35}\)
=>\(2x-3+5x^2-10x< =5x^2-14x+21\)
=>-8x-3<=-14x+21
=>6x<=24
=>x<=4
a) | 2x - 1 | = 1- 3x
\(\orbr{\begin{cases}2x-1=1-3x\\2x-1=-\left(1-3x\right)\end{cases}}\)
\(\orbr{\begin{cases}2x-3x=1+1\\2x-1=-1+3x\end{cases}}\)
\(\orbr{\begin{cases}-x=2\\2x+3x=-1+1\end{cases}}\)
\(\orbr{\begin{cases}x=-2\\5x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-2\\x=0\end{cases}}\)
b) | 1 - 2x | = x + 1
\(\orbr{\begin{cases}1-2x=x+1\\1-2x=-\left(x+1\right)\end{cases}}\)
\(\orbr{\begin{cases}-2x-x=1-1\\-2x+x=-1-1\end{cases}}\)
\(\orbr{\begin{cases}-3x=0\\-x=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
tương tự