Tìm các số nguyên x y biết
xy+2x=y+5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A, => x+2=0 hoặc y-3=0
=> x=-2 hoặc y=3
B, => x+1=0 hoặc xy-1=0
=> x=-1 hoặc xy=1
=> x=-1 hoặc x=y=+-1
a) \(\left(x+2\right).\left(y-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+2=0\\y-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-2\\y=3\end{cases}}\)
vậy \(\orbr{\begin{cases}x=-2\\y=3\end{cases}}\)
b) \(\left(x+1\right)\left(xy-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+1=0\\xy-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\xy=1\end{cases}}\)
vậy \(\orbr{\begin{cases}x=-1\\xy=1\end{cases}}\)
a. Với $x,y$ là số nguyên thì $7-2x, y-3$ cũng là số nguyên. Mà $(7-2x)(y-3)=12$ và $7-2x$ là số lẻ nên ta xét các TH sau:
TH1:
$7-2x=1, y-3=12\Rightarrow x=3; y=15$ (tm)
TH2:
$7-2x=-1; y-3=-12\Rightarrow x=4; y=-9$ (tm)
TH3:
$7-2x=3; y-3=4\Rightarrow x=2; y=7$ (tm)
TH4:
$7-2x=-3; y-3=-4\Rightarrow x=5; y=-1$ (tm)
b.
Với $x,y$ là số nguyên thì $2x-3, y+1$ cũng là số nguyên. Mà $(2x-3)(y+1)=12$ và $2x-3$ là số lẻ nên ta có các TH sau:
TH1: $2x-3=1; y+1=12\Rightarrow x=2; y=11$ (tm)
TH2: $2x-3=-1; y+1=-12\Rightarrow x=1; y=-13$ (tm)
TH3: $2x-3=3; y+1=4\Rightarrow x=3; y=3$ (tm)
TH4: $2x-3=-3; y+1=-4\Rightarrow x=0; y=-5$ (tm)
=>5=1x5=-1x(-5)
=>x-1=1=1+1 =>x=2 x-1=5=5+1 =>x=6
y+2=5=5-2 =>y=3 y+2=1=1-2 =>y=-1
x-1=-1=-1+1 =>x=0 x-1=-5=-5+1 =>x=-4
y+2=-5=-5-2 =>y=-7 y+2=-1=-1-2 =>x=-3
tick cho mình mình tick lại cho
Giải:
Ta có:
x + y = 2
y + z = 3
z + x = -5
\(\Rightarrow x+y+y+z+z+x=2+3+\left(-5\right)\)
\(\Rightarrow2x+2y+2x=0\)
\(\Rightarrow2\left(x+y+z\right)=0\)
\(\Rightarrow x+y+z=0\)
\(\Rightarrow x=0-3=-3\)
\(\Rightarrow y=0-\left(-5\right)=5\)
\(\Rightarrow z=0-2=-2\)
Vậy bộ số \(\left(x;y;z\right)\) là \(\left(-3;5;-2\right)\)
ta có x + y = 2, y + z = 3, z + x = -5
=> x + y + y +z + z + x = 2 + 3 + -5
=> 2(x + y+ z) = 0
=>x + y + z = 0
mà x + y = 2 => z= -2
tương tự => x = -3 và y = 5