Cho phân thức: A = \(\dfrac{x^2+2x+1}{x^2+1}\)
a) Tìm điều kiện của x để A được xác định.
b) Rút gọn A.
c) Tìm giá trị của x khi A bằng 2 .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Phân thức A được xác định khi: \(x^2-1\ne0\Rightarrow\left(x-1\right)\left(x+1\right)\ne0\Rightarrow\left\{{}\begin{matrix}x+1\ne0\\x-1\ne0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x\ne1\\x\ne-1\end{matrix}\right.\)
Vây ĐKXĐ của A là \(\left\{{}\begin{matrix}x\ne1\\x\ne-1\end{matrix}\right.\)
b)Ta có: \(A=\dfrac{x^2+2x+1}{x^2-1}=\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{\left(x+1\right)}{\left(x-1\right)}\)
Vậy \(A=\dfrac{x+1}{x-1}\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x\ne-1\end{matrix}\right.\)
c) Ta có A=2 <-> \(\dfrac{x+1}{x-1}=2\Leftrightarrow x+1=2\left(x-1\right)\Leftrightarrow x+1=2x-2\)
\(\Leftrightarrow x+1-2x+2=0\Leftrightarrow3-x=0\Rightarrow x=3\)
Vậy khi x=3 thì A=2
a) ĐKXĐ:
\(x^2-1\ne0\Leftrightarrow x\ne\pm1\)
b) \(A=\dfrac{x^2-2x+1}{x^2-1}\)
\(A=\dfrac{x^2-2\cdot x\cdot1+1^2}{x^2-1^2}\)
\(A=\dfrac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}\)
\(A=\dfrac{x-1}{x+1}\)
c) Thay x = 3 vào A ta có:
\(A=\dfrac{3-1}{3+1}=\dfrac{2}{4}=\dfrac{1}{2}\)
a) ĐKXĐ:
\(9x^2-y^2\ne0\Leftrightarrow\left(3x\right)^2-y^2\ne0\Leftrightarrow\left(3x-y\right)\left(3x+y\right)\ne0\)
\(\Leftrightarrow3x\ne\pm y\)
b) \(B=\dfrac{6x-2y}{9x^2-y^2}\)
\(B=\dfrac{2\cdot3x-2y}{\left(3x\right)^2-y^2}\)
\(B=\dfrac{2\left(3x-y\right)}{\left(3x+y\right)\left(3x-y\right)}\)
\(B=\dfrac{2}{3x+y}\)
Thay x = 1 và \(y=\dfrac{1}{2}\) và B ta có:
\(B=\dfrac{2}{3\cdot1+\dfrac{1}{2}}=\dfrac{2}{3+\dfrac{1}{2}}=\dfrac{2}{\dfrac{7}{2}}=\dfrac{4}{7}\)
a) ĐKXĐ: \(x\notin\left\{0;-\dfrac{1}{2};\dfrac{1}{2}\right\}\)
Ta có: \(A=\left(\dfrac{1}{2x-1}+\dfrac{3}{1-4x^2}-\dfrac{2}{2x+1}\right):\left(\dfrac{x^2}{2x^2+x}\right)\)
\(=\left(\dfrac{2x+1}{\left(2x-1\right)\left(2x+1\right)}-\dfrac{3}{\left(2x-1\right)\left(2x+1\right)}-\dfrac{2\left(2x-1\right)}{\left(2x+1\right)\left(2x-1\right)}\right):\left(\dfrac{x^2}{x\left(2x+1\right)}\right)\)
\(=\dfrac{2x+1-3-4x+2}{\left(2x-1\right)\left(2x+1\right)}:\dfrac{x}{2x+1}\)
\(=\dfrac{-2x}{\left(2x-1\right)\left(2x+1\right)}\cdot\dfrac{2x+1}{x}\)
\(=\dfrac{-2}{2x-1}\)
b) Ta có: \(\left|2x-1\right|=2\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=2\\2x-1=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=3\\2x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\left(nhận\right)\\x=-\dfrac{1}{2}\left(loại\right)\end{matrix}\right.\)
Thay \(x=\dfrac{3}{2}\) vào biểu thức \(A=\dfrac{-2}{2x-1}\), ta được:
\(A=-2:\left(2\cdot\dfrac{3}{2}-1\right)=-2:\left(3-1\right)=-2:2=-1\)
Vậy: Khi \(\left|2x-1\right|=2\) thì A=-1
c) Để \(A=\dfrac{1}{3}\) thì \(\dfrac{-2}{2x-1}=\dfrac{1}{3}\)
\(\Leftrightarrow2x-1=-6\)
\(\Leftrightarrow2x=-5\)
hay \(x=-\dfrac{5}{2}\)(thỏa ĐK)
Vậy: Để \(A=\dfrac{1}{3}\) thì \(x=-\dfrac{5}{2}\)
1.a)\(\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}\)
\(=\frac{x^3}{\left(x+2\right)\left(x-2\right)}-\frac{x}{x-2}-\frac{2}{x+2}\)
Để biểu thức được xác định thì:\(\left(x+2\right)\left(x-2\right)\ne0\)\(\Rightarrow x\ne\pm2\)
\(\left(x+2\right)\ne0\Rightarrow x\ne-2\)
\(\left(x-2\right)\ne0\Rightarrow x\ne2\)
Vậy để biểu thức xác định thì : \(x\ne\pm2\)
b) để C=0 thì ....
1, c , bn Nguyễn Hữu Triết chưa lm xong
ta có : \(/x-5/=2\)
\(\Rightarrow\orbr{\begin{cases}x-5=2\\x-5=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=3\end{cases}}\)
thay x = 7 vào biểu thứcC
\(\Rightarrow C=\frac{4.7^2\left(2-7\right)}{\left(7-3\right)\left(2+7\right)}=\frac{-988}{36}=\frac{-247}{9}\)KL :>...
thay x = 3 vào C
\(\Rightarrow C=\frac{4.3^2\left(2-3\right)}{\left(3-3\right)\left(3+7\right)}\)
=> ko tìm đc giá trị C tại x = 3
a. \(x\ne5\) là ĐKXĐ của biểu thức P
b. P =\(\dfrac{\left(x-5\right)^2}{x-5}\)=\(x-5\)
c. P = -1 <=> x-5 =-1 <=> x=4
a. \(ĐKXĐ:\left\{{}\begin{matrix}x\ne1\\x\ne-1\end{matrix}\right.\)
b. \(A=\dfrac{3x+3}{x^2-1}\\ A=\dfrac{3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\\ A=\dfrac{3}{x-1}\)
c. Để \(A=-2\) thì \(\dfrac{3}{x-1}=-2=\dfrac{3}{\dfrac{-3}{2}}\\ \Leftrightarrow x-1=\dfrac{-3}{2}\\ \Leftrightarrow x=\dfrac{-1}{2}\left(\text{t/m ĐKXĐ}\right)\)
Vậy \(x=\dfrac{-1}{2}\) để phân thức nhận giá trị là -2.
a) Có: \(x^2-1=\left(x-1\right)\left(x+1\right)\)
ĐKXĐ là x ≠ 1; x ≠ -1
b) \(\dfrac{3x+3}{x^2-1}=\dfrac{3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{3}{x-1}\)
c) Theo đề ta có: \(\dfrac{3}{x-1}=2\)
\(\Rightarrow x-1=\dfrac{3}{2}\)
\(\Rightarrow x=\dfrac{5}{2}\) (T/m ĐK)
\(a,ĐK:x\ne\pm1\\ b,B=\dfrac{x^2+x-x^2-1}{2\left(x-1\right)\left(x+1\right)}=\dfrac{x-1}{2\left(x-1\right)\left(x+1\right)}=\dfrac{1}{2\left(x+1\right)}\\ c,B=-\dfrac{1}{2}\Leftrightarrow2\left(x+1\right)=-2\Leftrightarrow x+1=-1\Leftrightarrow x=-2\left(tm\right)\)
Bài 1:
a) x≠2
Bài 2:
a) x≠0;x≠5
b) x2−10x+25x2−5x=(x−5)2x(x−5)=x−5x
c) Để phân thức có giá trị nguyên thì x−5x phải có giá trị nguyên.
=> x=−5
Bài 3:
a) (x+12x−2+3x2−1−x+32x+2)⋅(4x2−45)
=(x+12(x−1)+3(x−1)(x+1)−x+32(x+1))⋅2(2x2−2)5
=(x+1)2+6−(x−1)(x+3)2(x−1)(x+1)⋅2⋅2(x2−1)5
=(x+1)2+6−(x2+3x−x−3)(x−1)(x+1)⋅2(x−1)(x+1)5
=[(x+1)2+6−(x2+2x−3)]⋅25
=[(x+1)2+6−x2−2x+3]⋅25
=[(x+1)2+9−x2−2x]⋅25
=2(x+1)25+185−25x2−45x
=2(x2+2x+1)5+185−25x2−45x
=2x2+4x+25+185−25x2−45x
=2x2+4x+2+185−25x2−45x
=2x2+4x+205−25x2−45x
c) tự làm, đkxđ: x≠1;x≠−1
a: ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
b: \(A=\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x-1}{x+1}\)
c: Thay x=-2 vào A, ta được:
\(A=\dfrac{-2-1}{-2+1}=\dfrac{-3}{-1}=3\)
Phân thức \(A=\dfrac{x^2+2x+1}{x^2+1}\) được xác định
\(\Leftrightarrow x^2+1\ne0\\ \Leftrightarrow x^2\ne-1\)
Mà \(x^2\ne-1\forall x\)
\(\Rightarrow A=\dfrac{x^2+2x+1}{x^2+1}\) được xác định với mọi giá trị của biến x
a) Phân thức A được xác định khi:
x2+1≠0
=>x² khác - 1
=>x khác +-1
Vây ĐKXĐ của A là x≠1 và x≠−1
b)Ta có: A=x²+2x+1/x²+1
=(x+1)²/(x+1)
=(x+1)
Vậy A=x+1
⇔x≠1 và x khác -1
c) Ta có A=2
<=> x+1=2
⇔x=2-1
⇔x=1 KT
⇔x+1-1=0
=>x=2
Vậy khi x= thì A=2
( Bài này mình làm đại sai thì sr)