Hãy tìm một số có 5 chữ số biết khi xếp các chữ số trong số đó ngược lại thì bằng số mới gấp 4 lần số ban đầu.Số đó là ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
số đó là: 1089
vì:nếu ta lấy 1089 và đảo ngược lạ thì ra 9801 : 9 = 1089
gọi số đó là ab
nếu viết thêm chữ số 0 vào giữa hai số đó ta được a0b
ta có : ab x 9 = a0b
( 10a + b ) x 9 = 100a + b
90 a + 9b = 100a + b
8b = 10a
4b = 5a
Vì a,b là số có một chữ số
=> b = 5 ; a = 4
vậy số cần tìm là 45
Gợi ý: Gọi số cần tìm là abcd. (a # 0), 0 < a, b, c, d < 10. abcd x 4 = dcba nên a có thể nhận giá trị 1 hoặc 2, không thể bằng 3 vì khi đó 4 lần abcd sẽ trở thành số có 5 chữ số. Xét TH1: a = 1, dễ thấy vô lí vì 1bcd x 4 = dcb1. Xét TH2: a = 2, ta có: 2bcd x 4 = dcb2. => d có thể bằng 3 hoặc 8. Xét tiếp từng TH, KL. (Bạn tự giải)
Tìm số tự nhiên có 4 chữ số, biết rằng khi viết ngược số đó lại ta được số mới gấp 4 lần số ban đầu.
Gợi ý:
Gọi số cần tìm là abcd. (a # 0), 0 < a, b, c, d < 10.
abcd x 4 = dcba nên a có thể nhận giá trị 1 hoặc 2, không thể bằng 3 vì khi đó 4 lần abcd sẽ trở thành số có 5 chữ số.
Xét TH1: a = 1, dễ thấy vô lí vì 1bcd x 4 = dcb1.
Xét TH2: a = 2, ta có: 2bcd x 4 = dcb2.
=> d có thể bằng 3 hoặc 8.
Xét tiếp từng TH, KL. (Bạn tự giải)
Gọi số đó có dạng \(\overline{xy}=10x+y\) với x;y là các số tự nhiên từ 1 tới 9
Do số đó gấp 4 lần tổng các chữ số của nó nên ta có:
\(10x+y=4\left(x+y\right)\Rightarrow2x-y=0\)
Khi viết ngược số đó ta được số mới có giá trị là: \(10y+x\)
Do số mới lớn hơn số ban đầu 36 đơn vị nên:
\(10y+x-\left(10x+y\right)=36\Rightarrow y-x=4\)
Ta được hệ: \(\left\{{}\begin{matrix}2x-y=0\\y-x=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=4\\y=8\end{matrix}\right.\)
Vậy số đó là 48