K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2016

Giả sử a+b >2 thì a3+b3+3ab(a+b)>8a3+b3+3ab(a+b)>8

⇔ab(a+b)>2⇔ab(a+b)>2

⇔ab(a+b)>a3+b3⇔ab(a+b)>a3+b3

⇔(a−b)2(a+b)<0⇔(a−b)2(a+b)<0

vô lý nên a+b≤2a+b≤2

27 tháng 3 2016

a3+b3=(a+b)(.....)

dễ có (...) >0  => a+b>0

kia thì áp dụng bđt 4(a3+b3)>=(a+b)3  (dễ cm mà ,,,tách a^3+b^3 ra rồi cói và bđt phụ)

có : \(a^3+b^3=\left(a+b\right).\left(a^2-ab+b^2\right)\) \(=2\)

\(a^2-ab+b^2>0\) do \(a^2;b^2>0\) ; ab>0

\(\Rightarrow a+b>0\) (1)

\(\Rightarrow\left(a+b\right).\left(a^2-ab+b^2\right)=1.2\)

\(\Rightarrow a+b=1\) hoặc \(a+b=2\)

\(\Leftrightarrow a+b\le2\) (2)

từ (1) và (2) => điều phải chứng minh

18 tháng 4 2017

ta co:

      a-b=a^3+b^3

a-b-b^3=a^3

Mà một số luôn nhỏ hơn hoặc bằng chính nó lũy thừa 3

Nhưng a-b-b^3=a^3 nên b=0

Mà a=a^3 suy ra a=1

28 tháng 4 2024

nếu nhưtrong trường hợp a<= 1 thì a >= a^3 chứ?

17 tháng 7 2019

Ta có: \(a^3+b^3>a^3-b^3\)

\(\Rightarrow a-b>a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)

\(\Rightarrow a^2+ab+b^2< 1\Rightarrow a^2+b^2< 1\left(đpcm\right)\)