K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2016

\(\frac{x^2}{y^2}+\frac{y^2}{x^2}+4\ge 3\left(\frac{x}{y}+\frac{y}{x}\right)\) <=>\(\frac{x^2}{y^2}+\frac{y^2}{x^2}+4 - 3\left(\frac{x}{y}+\frac{y}{x}\right)\ge0\)

Vì \(\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge 2\)

và \(\left(\frac{x}{y}+\frac{y}{x}\right)\ge 2\)

nên BĐT tương đương 2+ 4- 3x2 \(\ge 0\)

<=> 0\(\ge 0\)

Dấu = xảy ra khi x=y

 

4 tháng 2 2016

Đặt \(\frac{x}{y}+\frac{y}{x}=a\) ta có \(lal=l\frac{x}{y}+\frac{y}{x}l=l\frac{x}{y}l+l\frac{y}{x}l\ge2\) ( cô - si )

=> \(a\ge2ora\le-2\)

 BĐT <=> \(a^2-2+4\ge3a\Leftrightarrow a^2-3a+2\ge0\Leftrightarrow\left(a-1\right)\left(a-2\right)\ge0\)

(+) với \(a\ge2\) => \(a-1>a-2\ge0\Leftrightarrow\left(a-1\right)\left(a-2\right)\ge0\)

(+) với \(a\le-2\Rightarrow a-2\le0;a-1\le0\Rightarrow\left(a-2\right)\left(a-1\right)\ge0\)

Vậy BĐT trên luôn đúng 

11 tháng 2 2020

Day la bdt Svacso dau bang xay ra <=> \(\frac{a}{x}=\frac{b}{y}\)

11 tháng 2 2020

Quy đồng full

\(\frac{a^2y+b^2x}{xy}\ge\frac{\left(a+b\right)^2}{x+y}\)

\(\Leftrightarrow a^2xy+a^2y^2+b^2x^2+b^2xy\ge\left(a^2+2ab+b^2\right)xy\)

\(\Leftrightarrow a^2y^2-2abxy+b^2x^2\ge0\)

\(\Leftrightarrow\left(ay-bx\right)^2\ge0\)

 lun đúng

Bài 1 : Cho hai số x,y thỏa mãn đẳng thức :\(\left(x+\sqrt{x^2+2011}\right)\times\left(y+\sqrt{y^2+2011}\right)=2011\)TÌm x+y .Bài 2 : Cho x>0,y>0 và \(x+y\ge6\). Tìm giá trị nhỏ nhất của biểu thức :\(P=3x+2y+\frac{6}{x}+\frac{8}{y}\)Bài 3 : Cho các số thực x,a,b,c thay đổi , thỏa mạn hệ :\(\hept{\begin{cases}x+a++b+c=7\\x^2+a^2+b^2+c^2=13\end{cases}}\)TÌm giá trị lớn nhất và nhỏ nhất của x .Bài 4 : Cho các...
Đọc tiếp

Bài 1 : Cho hai số x,y thỏa mãn đẳng thức :

\(\left(x+\sqrt{x^2+2011}\right)\times\left(y+\sqrt{y^2+2011}\right)=2011\)TÌm x+y .

Bài 2 : Cho x>0,y>0 và \(x+y\ge6\). Tìm giá trị nhỏ nhất của biểu thức :

\(P=3x+2y+\frac{6}{x}+\frac{8}{y}\)

Bài 3 : Cho các số thực x,a,b,c thay đổi , thỏa mạn hệ :

\(\hept{\begin{cases}x+a++b+c=7\\x^2+a^2+b^2+c^2=13\end{cases}}\)TÌm giá trị lớn nhất và nhỏ nhất của x .

Bài 4 : Cho các số dương a,b,c . Chứng minh :

\(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)

Bài 5: Cho x,y là hai số thực thỏa mãn :(x+y)2+7.(x+y)+y2+10=0 . Tìm giá trị lớn nhất và nhỏ nhất của biểu thức A=x+y+1

Bài 6: Tìm giá trị nhỏ nhất biểu thức : \(P=\frac{x^4+2x^2+2}{x^2+1}\)

Bài 7 : CHo các số dương a,b,c . Chứng minh bất đẳng thức :

\(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\ge4\times\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)

 

6
3 tháng 11 2019

neu de bai bai 1 la tinh x+y thi mik lam cho

4 tháng 11 2019

đăng từng này thì ai làm cho 

AH
Akai Haruma
Giáo viên
24 tháng 12 2018

Bài 1:
ĐKXĐ: \(1\leq x\leq 3\)

Ta có:

\(\sqrt{x-1}+\sqrt{3-x}=3x^2-4x-2\)

\(\Leftrightarrow \sqrt{x-1}-1+\sqrt{3-x}-1=3x^2-4x-4\)

\(\Leftrightarrow \frac{x-2}{\sqrt{x-1}+1}+\frac{2-x}{\sqrt{3-x}+1}=(x-2)(3x+2)\)

\(\Leftrightarrow (x-2)\left(3x+2+\frac{1}{\sqrt{3-x}+1}-\frac{1}{\sqrt{x-1}+1}\right)=0(1)\)

Với mọi $1\leq x\leq 3$ ta luôn có \(3x+2\geq 5; \frac{1}{\sqrt{3-x}+1}>0; \frac{1}{\sqrt{x-1}+1}\leq 1\)

\(\Rightarrow 3x+2+\frac{1}{\sqrt{3-x}+1}-\frac{1}{\sqrt{x-1}+1}>0(2)\)

Từ (1);(2) suy ra \(x-2=0\Rightarrow x=2\)

Vậy $x=2$ là nghiệm duy nhất của pt đã cho.

AH
Akai Haruma
Giáo viên
24 tháng 12 2018

Bài 2:

Với mọi $x,y,z$ nguyên không âm thì :

\(2014^z=2012^x+2013^y\geq 2012^0+2013^0=2\Rightarrow z\geq 1\)

Với $z\geq 1$ thì ta luôn có \(2012^x+2013^y=2014^z\) là số chẵn

\(2013^y\) luôn lẻ nên \(2012^x\) phải lẻ. Điều này chỉ xảy ra khi $x=0$

Vậy $x=0$

Khi đó ta có: \(1+2013^y=2014^z\)

Nếu $z=1$ thì dễ thu được $y=1$

Nếu $z>1$:

Ta có: \(2014^z\vdots 4(1)\)

\(2013\equiv 1\pmod 4\Rightarrow 1+2013^y\equiv 1+1\equiv 2\pmod 4\)

Tức \(1+2013^y\not\vdots 4\) (mâu thuẫn với (1))

Vậy PT có nghiệm duy nhất \((x,y,z)=(0,1,1)\)

24 tháng 11 2019

Tiện tay chém trước vài bài dễ.

Bài 1:

\(VT=\Sigma_{cyc}\sqrt{\frac{a}{b+c}}=\Sigma_{cyc}\frac{a}{\sqrt{a\left(b+c\right)}}\ge\Sigma_{cyc}\frac{a}{\frac{a+b+c}{2}}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

Nhưng dấu bằng không xảy ra nên ta có đpcm. (tui dùng cái kí hiệu tổng cho nó gọn thôi nha!)

Bài 2:

1) Thấy nó sao sao nên để tối nghĩ luôn

2) 

c) \(VT=\left(a-b+1\right)^2+\left(b-1\right)^2\ge0\)

Đẳng thức xảy ra khi a = 0; b = 1

24 tháng 11 2019

2b) \(VT=\left(a-2b+1\right)^2+\left(b-1\right)^2+1\ge1>0\)

Có đpcm

30 tháng 3 2018

c)          \(\left(ax+by\right)^2\le\left(a^2+b^2\right)\left(x^2+y^2\right)\)

\(\Leftrightarrow\)\(\left(ax\right)^2+2axby+\left(by\right)^2\le\left(ax\right)^2+\left(ay\right)^2+\left(bx\right)^2+\left(by\right)^2\)

\(\Leftrightarrow\)\(2axby\le\left(ay\right)^2+\left(bx\right)^2\)

\(\Leftrightarrow\)\(\left(ay\right)^2-2axby+\left(bx\right)^2\ge0\)

\(\Leftrightarrow\)\(\left(ay-bx\right)^2\ge0\)  luôn đúng

Dấu "=" xảy ra  \(\Leftrightarrow\)\(\frac{a}{x}=\frac{b}{y}\)

3 tháng 4 2018

a) cứ tach theo kieu a^2-2a+1 =(a-1)^2 >0 la ra

b)nhân 2 lên rồi trừ đi ghép hằng đẳng thức giống câu a la ra

d) dung bdt a^3+b^3>=a^2b+ab^2

14 tháng 3 2019

\(\frac{x^2}{y^2}+\frac{y^2}{x^2}+4\ge3\left(\frac{x}{y}+\frac{y}{x}\right)\)

\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}\right)^2+2\ge3\left(\frac{x}{y}+\frac{y}{x}\right)\)

\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}\right)^2-3\left(\frac{y}{x}+\frac{x}{y}\right)+2\ge0\)

\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}-1\right)\left(\frac{x}{y}+\frac{y}{x}-2\right)\ge0\)

\(\Leftrightarrow\frac{\left(x^2-xy+y^2\right)\left(x^2-2xy+y^2\right)}{x^2y^2}\ge0\)

\(\Leftrightarrow\frac{\left[\left(x-\frac{1}{2}y\right)^2+\frac{3}{4}y^2\right]\left(x-y\right)^2}{x^2y^2}\ge0\) ( đúng )

Vậy đẳng thức đã được chứng minh .

Dấu \("="\) xảy ra khi \(x=y\)

14 tháng 3 2019

DƯƠNG PHAN KHÁNH DƯƠNG: Dùng AM-GM cũng được mà

Áp dụng BĐT AM-GM ta có:\(\left\{{}\begin{matrix}\frac{x^2}{y^2}+1\ge2.\frac{x}{y}\\\frac{y^2}{x^2}+1\ge2.\frac{y}{x}\\\frac{x}{y}+\frac{y}{x}\ge2\end{matrix}\right.\)

Dấu " = " xảy ra <=> x=y

\(\Rightarrow\frac{x^2}{y^2}+1+\frac{y^2}{x^2}+1+2\ge2\left(\frac{x}{y}+\frac{y}{x}\right)+2\)

Có: \(2\left(\frac{x}{y}+\frac{y}{x}\right)+2-3\left(\frac{x}{y}+\frac{y}{x}\right)=\left(\frac{x}{y}+\frac{y}{x}\right)\left(2-3\right)+2\ge2.\left(-1\right)+2=0\)\(\Rightarrow\frac{x^2}{y^2}+\frac{y^2}{x^2}+4\ge3\left(\frac{x}{y}+\frac{y}{x}\right)\)

Dấu " = " xảy ra <=> x=y